Future Trends and Opportunities of Artificial Intelligence and Machine Learning in the Resilience of Interdependent Critical Infrastructure Networks in the Kingdom of Saudi Arabia DOI
Basem A. Alkhaleel

Lecture notes in civil engineering, Journal Year: 2024, Volume and Issue: unknown, P. 232 - 239

Published: Oct. 25, 2024

Language: Английский

Machine Learning for Anomaly Detection in Electric Transportation Networks DOI Creative Commons
Kseniia Iurevna Usanova,

Gongada Sandhya Rani,

Neeti Mishra

et al.

E3S Web of Conferences, Journal Year: 2024, Volume and Issue: 511, P. 01039 - 01039

Published: Jan. 1, 2024

This study introduces a sophisticated anomaly detection system based on machine learning. The is specifically developed to enhance the dependability and safeguard security of electric transportation networks, with particular emphasis charging infrastructure for vehicles (EVs). Utilizing extensive datasets, research examines several facets stations, records, identified abnormalities, following maintenance measures. examination station demonstrates system’s versatility in accommodating many circumstances, as seen by range power ratings, consumption patterns, energy provided. Further records provides comprehensive understanding individual sessions, enabling irregularities such atypical surges extended durations. learning system, having been trained verified using this data, has commendable degree precision identifying anomalies, shown congruence between anticipated abnormalities real results. repair measures carried out reaction highlight practical ramifications proactive tactics utilized reduce downtime operations. performance measures, including accuracy, recall, F1 score, unequivocally validate resilience guaranteeing precise identification while mitigating occurrence false positives negatives. seamless incorporation into results, not only amplifies safeguarding EV but also establishes an invaluable instrument implementations. research, addition offering thorough performance, elucidates forthcoming avenues scalability, real-time monitoring, interpretability, thereby making valuable contribution wider discussion revolutionary capabilities ever-changing realm transportation.

Language: Английский

Citations

2

Advancements in AI-Based Information Technologies: Solutions for Quality and Security DOI Creative Commons
Tetiana Hovorushchenko, Ivan Izonin, Hakan Kutucu

et al.

Systems, Journal Year: 2024, Volume and Issue: 12(2), P. 58 - 58

Published: Feb. 9, 2024

At the current stage of development and implementation information technology in various areas human activity, decisive changes are taking place, as there powerful technical resources for accumulation processing large amounts [...]

Language: Английский

Citations

1

Modeling and Upgrade of Disaster-Resilient Interdependent Networks Using Machine Learning DOI
Ferenc Mogyorósi, Péter Revisnyei, Alija Pašíć

et al.

Published: Jan. 1, 2024

Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI

Language: Английский

Citations

0

Modeling and upgrade of disaster-resilient interdependent networks using machine learning DOI
Ferenc Mogyorósi, Péter Revisnyei, Alija Pašíć

et al.

Optical Switching and Networking, Journal Year: 2024, Volume and Issue: 55, P. 100791 - 100791

Published: Nov. 9, 2024

Citations

0

Ltl-Based Runtime Verification Framework for Cyber-Attack Anomaly Prediction in Cyber-Physical Systems DOI
Ayodeji James Akande, Ernest Foo, Zhé Hóu

et al.

Published: Jan. 1, 2024

Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI

Language: Английский

Citations

0

Current Applications and Future Trends of Artificial Intelligence and Machine Learning in the Resilience of Interdependent Critical Infrastructures DOI Open Access
Basem A. Alkhaleel

Published: Feb. 12, 2024

Critical infrastructures, such as power and water networks, are vital for society the economy. However, they vulnerable to various disruptions component failures, cyber-attacks, natural disasters. These can cascade across critical infrastructure networks (CINs), causing significant socioeconomic losses. Decision-makers face challenge of protecting CINs before restoring their functions afterward, considering interdependencies uncertainties. Current methods struggle model big data, complex interactions, multilayer dependencies between CINs. Artificial intelligence (AI) machine learning (ML) applications be used overcome these challenges, systems discover data patterns representing a promising research trend that could benefit both private companies governments. This article undertakes comprehensive review literature on in improving resilience interdependent (ICISs). The aim is address existing knowledge gap dispersed articles this area, following Preferred Reporting Items Systematic Reviews Meta-Analyses (PRISMA) protocol. primary goal assess current state ML ICISs engineering field by examining available literature, order future opportunities trends. findings summarized, potential trends listed, aiming inspire practitioners explore directions field.

Language: Английский

Citations

0

Improving Earth surface temperature forecasting through the optimization of deep learning hyper-parameters using Barnacles Mating Optimizer DOI Creative Commons
Zuriani Mustaffa, Mohd Herwan Sulaiman, Muhammad Arif Mohamad

et al.

Franklin Open, Journal Year: 2024, Volume and Issue: 8, P. 100137 - 100137

Published: July 14, 2024

Time series forecasting is crucial across various sectors, aiding stakeholders in making informed decisions, planning for the short and long term, managing risks, optimizing profits, ensuring safety. One significant application of time predicting Earth surface temperatures, which vital civil environmental sectors such as agriculture, energy, meteorology. This study proposes a hybrid model temperature using Deep Learning (DL). To improve DL model's performance, an optimization algorithm called Barnacles Mating Optimizer (BMO) integrated to optimize both weights biases. The trained on global dataset with seven inputs compared models optimized by Particle Swarm Optimization (PSO), Harmony Search Algorithm (HSA), Ant Colony (ACO). Additionally, comparison made Autoregressive Moving Average (ARIMA) method. Evaluation Mean Absolute Error (MAE), Root Square (RMSE), coefficient determination (R2) demonstrates superior performance BMO, showing minimal errors.

Language: Английский

Citations

0

Future Trends and Opportunities of Artificial Intelligence and Machine Learning in the Resilience of Interdependent Critical Infrastructure Networks in the Kingdom of Saudi Arabia DOI
Basem A. Alkhaleel

Lecture notes in civil engineering, Journal Year: 2024, Volume and Issue: unknown, P. 232 - 239

Published: Oct. 25, 2024

Language: Английский

Citations

0