Jeotermal Temelli bir Organik Rankine Çevriminin Eksergo-ekonomik Analizi DOI Open Access
Esra Hançer Güleryüz, Dilek Nur Özen

Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, Journal Year: 2024, Volume and Issue: unknown

Published: Aug. 31, 2024

Elektrik üretiminde yenilenebilir enerji kaynaklarının uygun sistemlerle entegre edilerek kullanım alanlarının genişletilmesi önemli bir husustur. Bu doğrultuda, ORÇ kullanımı düşük ve orta sıcaklıkta kaynaklardan elektrik ön plana çıkmaktadır. çalışma, jeotermal tabanlı geleneksel Organik Rankine çevriminin (ORÇ) enerji, ekserji eksergo-ekonomik analizlerini (3E) içermektedir. Eksergo-ekonomik analiz yöntemi olarak Modifiye Edilmiş Üretim Yapısı Analizi (MOPSA) kullanılmıştır. MOPSA yöntemi, sistem bileşenlerinin oranlarının maliyetlendirilmesine olanak tanıyan yöntemdir bu yönüyle diğer ekserji-ekonomik yöntemlerden ayrılmaktadır. Analizler sonucunda, önerilen sistemin toplam verimliliği (η_ex) %50.23 bulunurken, en yüksek yıkımına sahip bileşeni 43.97 kW değeri ile evaporatör olmuştur. Sistemin yıkım 70.67 bulunmuş yıkımının birim maliyeti (c_s) 1.872 $/GJ hesaplanmıştır. Önerilen ürün (〖c_(p,total)〗^MOPSA) 3.662 $/GJ'dür.

A Novel Ensemble Machine Learning Approach for Optimizing Sustainability and Green Hydrogen Production in Hybrid Renewable-Based Organic Rankine Cycle-Operated Proton Exchange Membrane Electrolyser System DOI

Vignesh Kumar,

K. Madhesh,

Sanjay Kumar

et al.

Renewable Energy, Journal Year: 2025, Volume and Issue: unknown, P. 122369 - 122369

Published: Jan. 1, 2025

Language: Английский

Citations

1

Machine Learning Prediction of Photovoltaic Hydrogen Production Capacity Using Long Short-Term Memory Model DOI Creative Commons
Qian He, Mingbin Zhao, Shujie Li

et al.

Energies, Journal Year: 2025, Volume and Issue: 18(3), P. 543 - 543

Published: Jan. 24, 2025

The yield of photovoltaic hydrogen production systems is influenced by a number factors, including weather conditions, the cleanliness modules, and operational efficiency. Temporal variations in conditions have been shown to significantly impact output systems, thereby influencing production. To address inaccuracies capacity predictions due weather-related temporal different regions, this study develops method for predicting using long short-term memory (LSTM) neural network model. proposed integrates meteorological parameters, temperature, wind speed, precipitation, humidity into model estimate daily solar radiation intensity. This approach then integrated with prediction region’s capacity. validate accuracy feasibility method, data from Lanzhou, China, 2013 2022 were used train test its performance. results show that predicted agrees well actual values, low mean absolute percentage error (MAPE) high coefficient determination (R2). winter has MAPE 0.55% an R2 0.985, while summer slightly higher 0.61% lower 0.968, irradiance levels fluctuations. present captures long-term dependencies time series data, improving compared conventional methods. offers cost-effective practical solution production, demonstrating significant potential optimization operation diverse environments.

Language: Английский

Citations

1

State-of-health estimation for lithium-ion battery via an evolutionary Stacking ensemble learning paradigm of random vector functional link and active-state-tracking long–short-term memory neural network DOI
Yue Zhang, Yeqin Wang, Chu Zhang

et al.

Applied Energy, Journal Year: 2023, Volume and Issue: 356, P. 122417 - 122417

Published: Dec. 7, 2023

Language: Английский

Citations

18

Machine Learning-Based Process Optimization in Biopolymer Manufacturing: A Review DOI Open Access
Ivan Malashin,

D. A. Martysyuk,

В С Тынченко

et al.

Polymers, Journal Year: 2024, Volume and Issue: 16(23), P. 3368 - 3368

Published: Nov. 29, 2024

The integration of machine learning (ML) into material manufacturing has driven advancements in optimizing biopolymer production processes. ML techniques, applied across various stages production, enable the analysis complex data generated throughout identifying patterns and insights not easily observed through traditional methods. As sustainable alternatives to petrochemical-based plastics, biopolymers present unique challenges due their reliance on variable bio-based feedstocks processing conditions. This review systematically summarizes current applications techniques aiming provide a comprehensive reference for future research while highlighting potential enhance efficiency, reduce costs, improve product quality. also shows role algorithms, including supervised, unsupervised, deep

Language: Английский

Citations

5

An improved capacitance–resistance model for analysing hydrogen production with geothermal energy utilisation DOI
Zhengguang Liu,

Minghui Shi,

Mohammad Mohammadi

et al.

International Journal of Hydrogen Energy, Journal Year: 2024, Volume and Issue: unknown

Published: Aug. 1, 2024

Language: Английский

Citations

3

Bilingual Dictionary Extraction Algorithm Based on Recurrent Neural Network DOI

Chunpeng Cai

Lecture notes on data engineering and communications technologies, Journal Year: 2025, Volume and Issue: unknown, P. 241 - 254

Published: Jan. 1, 2025

Language: Английский

Citations

0

Thermal design and genetic algorithm optimization of geothermal and solar-assisted multi-energy and hydrogen production using artificial neural networks DOI
Ceyhun Yılmaz, Muhammed Arslan, Safiye Nur Özdemir

et al.

Energy, Journal Year: 2025, Volume and Issue: 324, P. 135941 - 135941

Published: April 10, 2025

Language: Английский

Citations

0

Fourth-generation fluid effect in geothermal-based hydrogen production combined system DOI
Sadık Ata, Ali Kahraman, Remzi ŞAHİN

et al.

International Journal of Hydrogen Energy, Journal Year: 2024, Volume and Issue: 75, P. 637 - 661

Published: May 20, 2024

Language: Английский

Citations

2

An advanced spatial decision model for strategic placement of off-site hydrogen refueling stations in urban areas DOI
Akram Elomiya, Jiří Křupka, Vladimir Šimić

et al.

eTransportation, Journal Year: 2024, Volume and Issue: 22, P. 100375 - 100375

Published: Nov. 2, 2024

Language: Английский

Citations

2

Modeling energy management of an energy hub with hybrid energy storage systems for a smart island considering water–electricity nexus DOI
Saleh Sadeghi Gougheri, Ali Ahmadian, Ali Diabat

et al.

International Journal of Hydrogen Energy, Journal Year: 2024, Volume and Issue: 71, P. 600 - 616

Published: May 22, 2024

Language: Английский

Citations

1