Journal of King Saud University - Computer and Information Sciences,
Journal Year:
2023,
Volume and Issue:
36(1), P. 101905 - 101905
Published: Dec. 31, 2023
In
this
paper,
the
main
objective
is
to
estimate
percentage
of
glycosylated
hemoglobin
through
an
easily
accessible
computational
platform
risk
generating
type
2
diabetes
mellitus
in
Mexican
population.
The
estimation
tool
developed
artificial
neural
network
model,
which
was
trained
and
validated
according
a
population
sample
1120
people
between
18
59
years
old.
model
inputs
were
gender,
age,
body
mass
index,
waist
circumference,
weekly
food
consumption,
family
history,
whether
person
suffers
from
any
chronic
degenerative
disease
other
than
T2DM.
We
used
as
output,
estimated
dynamic
glucose
model.
results
present
coefficient
determination
99%,
demonstrating
acceptable
performance
aid
for
health
personnel,
seeks
generate
first
approximation
glycemic
status
those
communities
with
high
marginalization
index
prevention
strategies.
AIMS Mathematics,
Journal Year:
2024,
Volume and Issue:
9(2), P. 3711 - 3956
Published: Jan. 1, 2024
<abstract>
<p>The
current
development
of
logic
satisfiability
in
discrete
Hopfield
neural
networks
(DHNN)has
been
segregated
into
systematic
and
non-systematic
logic.
Most
the
research
tends
to
improve
logical
rules
various
extents,
such
as
introducing
ratio
a
negative
literal
flexible
hybrid
structure
that
combines
structures.
However,
existing
rule
exhibited
drawback
concerning
impact
within
structure.
Therefore,
this
paper
presented
novel
class
called
conditional
random
<italic>k</italic>
for
=
1,
2
while
intentionally
disregarding
both
positive
literals
second-order
clauses.
The
proposed
was
embedded
network
with
ultimate
goal
minimizing
cost
function.
Moreover,
non-monotonic
Smish
activation
function
has
introduced
aim
enhancing
quality
final
neuronal
state.
performance
new
compared
other
state
art
conjunction
five
different
types
functions.
Based
on
findings,
obtained
lower
learning
error,
highest
total
neuron
variation
<italic>TV</italic>
857
lowest
average
Jaccard
index,
<italic>JSI</italic>
0.5802.
On
top
that,
highlights
its
capability
DHNN
based
result
improvement
<italic>Zm</italic>
<italic>TV</italic>.
is
consistently
throughout
all
function,
showing
outperforms
functions
terms
<italic>TV.</italic>
This
presents
an
alternative
strategy
mining
technique.
finding
will
be
particular
interest
especially
areas
artificial
network,
function.</p>
</abstract>
Applied Computational Intelligence and Soft Computing,
Journal Year:
2024,
Volume and Issue:
2024(1)
Published: Jan. 1, 2024
COVID‐19
has
significantly
impacted
peoples’
mental
health
because
of
isolation
and
social
distancing
measures.
It
practically
impacts
every
segment
people’s
daily
lives
causes
a
medical
problem
that
spreads
throughout
the
entire
world.
This
pandemic
caused
an
increased
emotional
distress.
Since
everyone
been
affected
by
epidemic
physically,
emotionally,
financially,
it
is
crucial
to
examine
comprehend
reactions
as
crisis
affects
health.
study
uses
Twitter
data
understand
what
people
feel
during
pandemic.
We
collected
about
isolation,
preprocessed
text,
then
classified
tweets
into
various
emotion
classes.
The
are
using
twarc
library
academic
researcher
account
labeled
Vader
analyzer
after
preprocessing.
trained
five
machine
learning
models,
namely,
support
vector
(SVM),
Naïve
Bayes,
KNN,
decision
tree,
logistic
regression
find
patterns
trends
in
emotions.
individuals
analyzed.
applied
precision,
recall,
F
1‐score,
accuracy
evaluation
metrics,
which
shows
SVM
performed
best
among
other
models.
Our
results
show
isolated
felt
emotions,
out
which,
fear,
sadness,
surprise
were
most
common.
gives
insights
impact
power
understanding
outcomes.
findings
can
be
used
develop
targeted
interventions
strategies
address
toll
Indonesian Journal of Electrical Engineering and Computer Science,
Journal Year:
2024,
Volume and Issue:
33(3), P. 1829 - 1829
Published: Feb. 16, 2024
<div>Cloud
computing
(CC)
is
a
rapidly
developing
IT
approach
with
intrusion
detection
system
being
crucial
tool
for
safeguarding
virtual
networks
and
machines
from
potential
threats,
thereby
mitigating
security
concerns
in
the
cloud
environment.
The
(IDS)
demands
significant
improvements,
primarily
based
on
optimizing
performance
bolstering
measures.
This
research
aims
to
implement
an
IDS
utilizing
deep
learning
(DL)
method.
DL
model
promising
technique
widely
used
detect
intrusions.
implemented
hierarchical
long
short-term
memory
(HLSTM)
method’s
evaluated
feature
selection
through
variance
threshold-based
regression
(VTR)
two
network
datasets:
Bot-IoT
lab-knowledge
discovery
data
mining
(NSL-KDD).
paper
concludes
use
of
resulting
high
performance.
Moreover,
method
NSL-KDD
datasets
obtains
respective
accuracies
99.50%
0.995.
It
compared
existing
methods
namely,
ensemble
ID
CC
DL,
LeNet,
fuzzy
neural
Honey
Bader
algorithm
privacy-preserving
ID,
improved
metaheuristics
logic-based
security,
beluga
whale-tasmanian
devil
optimization
convolutional
(CNN)
TL,
chronological
slap
swarm
algorithm-based
belief
(DBN),
dragonfly
invasive
weed
optimization-based
Shepard
CNN.</div>
Baghdad Science Journal,
Journal Year:
2024,
Volume and Issue:
21(9), P. 3052 - 3052
Published: Feb. 20, 2024
تعد
شبكة
هوبفيلد
واحدة
من
أسهل
الأنواع
الشبكات
العصبية،
تركيب
الشبكة
يكون
كل
خلية
عصبية
في
تتصل
بالخلية
الأخرى،
وبالتالي
تسمى
العصبية
المتصلة
بالكامل.
بالإضافة
إلى
ذلك،
يعتبر
هذا
النوع
ذاكرة
ارتباطية
تلقائية،
نظرًا
لأن
تقوم
بإرجاع
النمط
فور
التعرف
عليه،
فإن
هذه
بها
العديد
القيود،
بما
ذلك
سعة
الذاكرة،
والتباين،
والمتعامد
بين
الأنماط،
والاوزان
المتماثلة،
والحد
الأدنى.
البحث
يقترح
استراتيجية
جديدة
لتصميم
الهوبفيلد
باستخدام
عملية
XOR
؛
حيث
تم
اقتراح
إستراتيجية
لحل
القيود
خلال
خوارزمية
جديدة،
الاستراتيجية
سيزيد
تحسين
أداء
تعديل
بنية
الشبكة،
ومراحل
التدريب
والتقارب
،
وان
المقترحة
تعتمد
على
حجم
النمط.
و
تتجنب
تعلم
نمط
مشابه
عدة
مرات،
تظهر
قابليتها
أنماط
مشوهة
بالضوضاء،
وسعة
تخزينها
غير
محدودة
وحل
مشكلة
المعكوس.
أظهرت
التجارب
أن
الطريقة
لها
نتائج
جيدة
تجنب
غالبية
قيود
هوبفيلد.
يتعلم
عدد
لا
حصر
له
الأنماط
بأحجام
مختلفة
مع
الحفاظ
نسبة
ضوضاء
مناسبة.