Deep reinforcement learning for solving car resequencing with selectivity banks in automotive assembly shops DOI
Yuzhe Huang, Gaocai Fu, Buyun Sheng

et al.

International Journal of Production Research, Journal Year: 2024, Volume and Issue: unknown, P. 1 - 22

Published: Sept. 24, 2024

Language: Английский

Multi-agent deep reinforcement learning-based approach for dynamic flexible assembly job shop scheduling with uncertain processing and transport times DOI
Hao Wang,

W. Lin,

Tao Peng

et al.

Expert Systems with Applications, Journal Year: 2025, Volume and Issue: unknown, P. 126441 - 126441

Published: Jan. 1, 2025

Language: Английский

Citations

0

Intelligente Energieoptimierung für nachhaltige Produktionssysteme DOI
A. Schneider, Martin Barth,

Alexander Müller

et al.

Zeitschrift für wirtschaftlichen Fabrikbetrieb, Journal Year: 2025, Volume and Issue: 120(1-2), P. 76 - 80

Published: Feb. 17, 2025

Abstract In der industriellen Produktion ist die Steigerung Energieeffizienz und damit verbundene Reduktion von CO₂-Emissionen eine zentrale Herausforderungen in Zeiten des Klimawandels. Besonders energieintensiven Industrien optimierte Energienutzung unerlässlich. Der Beitrag untersucht Strategien zur nachhaltigen wie Modellierung Simulation Energieverbräuchen Lastspitzenreduktion sowie dynamische Anpassung Produktionsphasen mithilfe maschinellen Lernens. Zudem werden Ansätze Auftragsplanung -verteilung beschrieben, durch Deep Reinforcement Learning optimiert werden, um Prozesse an erneuerbare Energien anzupassen. Digitale Zwillinge detaillierte Energieüberwachung helfen, Ineffizienzen frühzeitig zu erkennen korrigieren.

Citations

0

Learn to optimise for job shop scheduling: a survey with comparison between genetic programming and reinforcement learning DOI Creative Commons
Meng Xu, Yi Mei, Fangfang Zhang

et al.

Artificial Intelligence Review, Journal Year: 2025, Volume and Issue: 58(6)

Published: March 15, 2025

Language: Английский

Citations

0

Harnessing heterogeneous graph neural networks for Dynamic Job-Shop Scheduling Problem solutions DOI
Chien‐Liang Liu, P.S. Weng, Chun-Jan Tseng

et al.

Computers & Industrial Engineering, Journal Year: 2025, Volume and Issue: unknown, P. 111060 - 111060

Published: March 1, 2025

Language: Английский

Citations

0

Optimization of Urban Mobility with IoT and Big Data: Technology for the Information and Knowledge Society in Industry 5.0 DOI
Edwin Gerardo Acuña Acuña,

Ana Almanza Ferruzca,

Jimmy Rojas

et al.

Communications in computer and information science, Journal Year: 2025, Volume and Issue: unknown, P. 46 - 61

Published: Jan. 1, 2025

Language: Английский

Citations

0

A deep reinforcement learning approach with graph attention network and multi-signal differential reward for dynamic hybrid flow shop scheduling problem DOI
Youshan Liu, Y F Liu, Weiming Shen

et al.

Journal of Manufacturing Systems, Journal Year: 2025, Volume and Issue: 80, P. 643 - 661

Published: April 14, 2025

Language: Английский

Citations

0

Exploring the Adoption and Application of Transformer Models in Manufacturing Scheduling DOI
Carlos García-Castellano Gerbolés, Miguel Gutiérrez,

Miguel Ortega-Mier

et al.

Lecture notes on data engineering and communications technologies, Journal Year: 2025, Volume and Issue: unknown, P. 478 - 483

Published: Jan. 1, 2025

Language: Английский

Citations

0

A self-adaptive agent for flexible posture planning in robotic milling system DOI

Shengqiang Zhao,

Fangyu Peng, Juntong Su

et al.

Journal of Manufacturing Systems, Journal Year: 2024, Volume and Issue: 75, P. 228 - 245

Published: July 2, 2024

Language: Английский

Citations

3

Study on the application of single-agent and multi-agent reinforcement learning to dynamic scheduling in manufacturing environments with growing complexity: Case study on the synthesis of an industrial IoT Test Bed DOI Creative Commons
H. A. David, Fouad Bahrpeyma, Dirk Reichelt

et al.

Journal of Manufacturing Systems, Journal Year: 2024, Volume and Issue: 77, P. 525 - 557

Published: Oct. 19, 2024

Language: Английский

Citations

2

Generative deep reinforcement learning method for dynamic parallel machines scheduling with adaptive maintenance activities DOI
Ming Wang, Jie Zhang, Peng Zhang

et al.

Journal of Manufacturing Systems, Journal Year: 2024, Volume and Issue: 77, P. 946 - 961

Published: Nov. 12, 2024

Language: Английский

Citations

2