Predicting Dynamic Modulus of Asphalt Mixtures Based on Sparrow Search Algorithm Optimized Light Gradient Boosting Machine DOI
Ke Zhang, Zhaohui Min, Xiatong Hao

et al.

Published: Jan. 1, 2023

The dynamic modulus of asphalt mixture is a key parameter to evaluate its viscoelastic and fatigue performance. This can be determined by laboratory measurements or model forecasting. utilization prediction models offers an efficient alternative that avoid time-taking experiments. Therefore, it very important accurately predict the modulus. study aims propose with high accuracy, robustness interpretability considering hyper-parameter optimization. A new hybrid developed combining Sparrow Search Algorithm (SSA) Light Gradient Boosting Machine (LightGBM). input variables are evaluated using Pearson Correlation Coefficient (PCC). accuracy accessed. And relative significance analysis conducted measure effect parameters on prediction. research findings indicate SSA-LightGBM has best precision in compared previous regression machine learning models. binder type for complex shear found most critical feature predicting modulus, followed test temperature, viscosity, performance grade (PG) at low temperature.

Language: Английский

Intelligent prediction of compressive strength of self-compacting concrete incorporating silica fume using hybrid IWOA-GPR model DOI
Yang Yu,

Guangyin Wang,

Ghasan Fahim Huseien

et al.

Materials Today Communications, Journal Year: 2025, Volume and Issue: unknown, P. 112282 - 112282

Published: March 1, 2025

Language: Английский

Citations

0

Multi Expression Programming and interpretable machine learning for determining compressive strength of coral sand aggregate concrete DOI

Kamran Ehsan,

Azman Mohamed, Waleed Bin Inqiad

et al.

Materials Today Communications, Journal Year: 2025, Volume and Issue: unknown, P. 112370 - 112370

Published: March 1, 2025

Language: Английский

Citations

0

Data-driven compressive strength investigation and design suggestions for rubberized concrete DOI
Chang Zhou, Yuzhou Zheng

Materials Today Communications, Journal Year: 2025, Volume and Issue: unknown, P. 112477 - 112477

Published: April 1, 2025

Language: Английский

Citations

0

Optimization and Prediction of Compressive Strength and Slump in Concrete with Phase Change Microcapsules DOI

Jiangang Wei,

Hanwen Zhang, Yang Yan

et al.

Published: Jan. 1, 2025

Language: Английский

Citations

0

Multi-objective optimization of compressive strength and slump in MPCM-integrated concrete using machine learning DOI

Jiangang Wei,

Hanwen Zhang, Yang Yan

et al.

Materials Today Communications, Journal Year: 2025, Volume and Issue: unknown, P. 112619 - 112619

Published: April 1, 2025

Language: Английский

Citations

0

Analysis and modelling of gas relative permeability in reservoir by hybrid KELM methods DOI
Enming Li, Ning Zhang, Bin Xi

et al.

Earth Science Informatics, Journal Year: 2024, Volume and Issue: 17(4), P. 3163 - 3190

Published: May 31, 2024

Language: Английский

Citations

3

Probabilistic deep learning prediction of natural carbonation of low-carbon concrete incorporating SCMs DOI
Afshin Marani, Timileyin M. Oyinkanola, Daman K. Panesar

et al.

Cement and Concrete Composites, Journal Year: 2024, Volume and Issue: 152, P. 105635 - 105635

Published: June 14, 2024

Language: Английский

Citations

1

Gauss Süreç Regresyonu ve Destek Vektör Makineleri Kullanılarak Değerlendirilen Kendiliğinden Yerleşen Beton Davranışının Deneysel Veri İle Doğrulanması DOI Open Access
Merve Açıkgenç Ulaş

Fırat Üniversitesi Mühendislik Bilimleri Dergisi, Journal Year: 2023, Volume and Issue: 35(1), P. 379 - 388

Published: March 11, 2023

İnşaat Mühendisliği alanında yapı malzemelerinin özellikle betonun karışım tasarımını anlamak ve bazı özelliklerini tahmin edebilmek için makine öğrenmesi metotları sıkça kullanılmaya başlanmıştır. Bu bağlamda oldukça faydalı olan sayısız denilebilecek çeşitliliktedir. çalışmada metotlarından Gauss Süreç Regresyonu (GSR) Destek Vektör Makineleri (DVM), Kendiliğinden Yerleşen Beton (KYB)’nin basınç dayanımını etmek tercih edilmiştir. Çalışmanın amacı, farklı metotlarının beton performansını etmekteki başarılarının ispat edilmesi böylece bu metotların tasarımı kullanımının arttırılmasıdır. amaçla, KYB bileşimini içeren deneysel veri seti ile GSR DVM modelleri geliştirilmiştir. Geliştirilen modellerin performansları hem birbirleri de alanda başarısını literatürdeki birçok çalışma etmiş başka bir metodu, Yapay Sinir Ağı karşılaştırılmıştır. Sonuçta, eğitilen doğrulanan modellerinin KYB’nin dayanım etmekte başarılı oldukları ortaya çıkmıştır. Çalışma sonuçlarına göre problemdeki en metot olmuştur. modelin çıkışı arasındaki korelasyon katsayıları eğitim aşamasında 0.9888 test 0.8648 olarak hesaplanmıştır.

Citations

2

Determination of carbonation depth and pH in concrete containing crystalline waterproofing agents using the endoscopic method DOI
Tayfun Uygunoğlu, Uğur Fidan, Barış Şimşek

et al.

Journal of Building Engineering, Journal Year: 2024, Volume and Issue: 94, P. 110041 - 110041

Published: June 25, 2024

Language: Английский

Citations

0

Mixed-Curve Model for Evaluating the Carbonation Depth of Concrete at Different Ages DOI Open Access
Xinhao Wang, Qiuwei Yang,

Hongfei Cao

et al.

Materials, Journal Year: 2024, Volume and Issue: 17(19), P. 4710 - 4710

Published: Sept. 25, 2024

To accurately quantify the variation in concrete carbonation depth, selecting an appropriate mathematical curve model is crucial. Currently prevalent models, such as Fick and exponential confront limitations prediction accuracy range of application. Given that a single struggles to precisely describe pattern carbonation, this work introduces mixed-curve-based for effectively integrating with hyperbolic model. Compared model, additional term mixed-curve can be viewed reasonable correction better adapt complex varied conditions carbonation. This hybrid transcends individual enhancing fitting precision broadening scope applicability. The new boasts concise structure only two parameters, facilitating ease validate its superiority, rigorous comparisons were conducted between proposed existing ones, leveraging experimental data from 10 distinct scenarios. By comparing average error, standard deviation, coefficient determination across these cases, demonstrates clear advantage over In terms errors, error deviation are notably lower than those other models. determination, values achieved by all examples closer 1 both underscoring model’s superior quality remarkable stability. research indicates combined presented paper holds promising prospects widespread application predicting depth.

Language: Английский

Citations

0