Published: July 19, 2024
Language: Английский
Published: July 19, 2024
Language: Английский
Measurement, Journal Year: 2025, Volume and Issue: unknown, P. 116678 - 116678
Published: Jan. 1, 2025
Language: Английский
Citations
1Computer Science Review, Journal Year: 2025, Volume and Issue: 57, P. 100740 - 100740
Published: March 3, 2025
Language: Английский
Citations
1Results in Engineering, Journal Year: 2024, Volume and Issue: unknown, P. 103157 - 103157
Published: Oct. 1, 2024
Language: Английский
Citations
8Building and Environment, Journal Year: 2024, Volume and Issue: 250, P. 111185 - 111185
Published: Jan. 10, 2024
Language: Английский
Citations
7Energy and AI, Journal Year: 2024, Volume and Issue: 16, P. 100371 - 100371
Published: April 17, 2024
This paper proposes an integration of recent metaheuristic algorithm namely Evolutionary Mating Algorithm (EMA) in optimizing the weights and biases deep neural networks (DNN) for forecasting solar power generation. The study employs a Feed Forward Neural Network (FFNN) to forecast AC output using real plant measurements spanning 34-day period, recorded at 15-minute intervals. intricate nonlinear relationship between irradiation, ambient temperature, module temperature is captured accurate prediction. Additionally, conducts comprehensive comparison with established algorithms, including Differential Evolution (DE-DNN), Barnacles Optimizer (BMO-DNN), Particle Swarm Optimization (PSO-DNN), Harmony Search (HSA-DNN), DNN Adaptive Moment Estimation optimizer (ADAM) Nonlinear AutoRegressive eXogenous inputs (NARX). experimental results distinctly highlight exceptional performance EMA-DNN by attaining lowest Root Mean Squared Error (RMSE) during testing. contribution not only advances methodologies but also underscores potential merging algorithms contemporary improved accuracy reliability.
Language: Английский
Citations
6Results in Control and Optimization, Journal Year: 2025, Volume and Issue: unknown, P. 100518 - 100518
Published: Jan. 1, 2025
Language: Английский
Citations
0AIMS energy, Journal Year: 2025, Volume and Issue: 13(1), P. 35 - 85
Published: Jan. 1, 2025
<p>Concomitant with the expeditious growth of construction industry, challenge building energy consumption has become increasingly pronounced. A multitude factors influence operations, thereby underscoring paramount importance monitoring and predicting such consumption. The advent big data engendered a diversification in methodologies employed to predict Against backdrop influencing operation consumption, we reviewed advancements research pertaining supervision prediction deliberated on more energy-efficient low-carbon strategies for buildings within dual-carbon context, synthesized relevant progress across four dimensions: contemporary state supervision, determinants optimization Building upon investigation three predictive were examined: (ⅰ) Physical methods, (ⅱ) data-driven (ⅲ) mixed methods. An analysis accuracy these revealed that methods exhibited superior precision actual Furthermore, predicated this foundation identified determinants, also explored prediction. Through an in-depth examination prediction, distilled pertinent accurate forecasting offering insights guidance pursuit conservation emission reduction.</p>
Language: Английский
Citations
0Building and Environment, Journal Year: 2024, Volume and Issue: 256, P. 111488 - 111488
Published: April 5, 2024
Language: Английский
Citations
3Structures, Journal Year: 2024, Volume and Issue: 64, P. 106659 - 106659
Published: May 31, 2024
Language: Английский
Citations
3Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi, Journal Year: 2024, Volume and Issue: unknown
Published: Oct. 25, 2024
Optimizasyon, tüm olası alternatifler arasından bir problemin en optimal çözümünü belirleme sürecidir. Enerji sistemlerinde metasezgisel optimizasyon algoritmaları, karmaşık enerji problemlerini çözmede önemli rol oynamaktadır. Metasezgisel genetik algoritmalar, parçacık sürü optimizasyonu, simüle edilen tavlama, karınca kolonisi optimizasyonu gibi doğal süreçlerden esinlenerek geliştirilen ve genellikle bilgisayar tabanlı modellerle kullanılan özel yöntemleridir. büyük veri setleriyle çalışabilir farklı kısıtlamalar altında optimize edilmesi gereken çok sayıda değişkeni ele alabilirler. Bu nedenle sektöründe sürdürülebilirlik, verimlilik karlılık açısından öneme sahiptirler. verimliliğini artırmak, maliyetini azaltmak, üretimi, dağıtımı, tüketimi depolanması sistemlerinin bileşenlerini etmek için, yenilenebilir kaynaklarını entegre karbon ayak izini azaltmak çeşitli hedeflere ulaşmak için kullanılmaktadırlar. çalışmada, sistemleri uygulamalarında algoritmalarının kullanımı örnekler üzerinden incelenmiştir. algoritmaların ile problemlerin çözümlerinin daha kolaya indirgendiği görülmüştür.
Citations
0