From A-to-Z Review of Clustering Validation Indices
Bryar A. Hassan,
No information about this author
Noor Bahjat Tayfor,
No information about this author
Alla Ahmad Hassan
No information about this author
et al.
Neurocomputing,
Journal Year:
2024,
Volume and Issue:
601, P. 128198 - 128198
Published: July 18, 2024
Language: Английский
Integrated distributed flexible job shop scheduling and vehicle routing problem via Q-learning-based evolutionary algorithms
Yaping Fu,
No information about this author
Zhengpei Zhang,
No information about this author
Kaizhou Gao
No information about this author
et al.
Information Sciences,
Journal Year:
2025,
Volume and Issue:
unknown, P. 122169 - 122169
Published: April 1, 2025
Language: Английский
Patrones de Comportamiento en usuarios de transporte interprovincial en Ecuador mediante Técnicas de Machine Learning
Revista Venezolana de Gerencia,
Journal Year:
2025,
Volume and Issue:
30(110), P. 1047 - 1061
Published: April 4, 2025
Este
estudio
tiene
como
objetivo
analizar
y
predecir
patrones
de
comportamiento
los
usuarios
transporte
interprovincial
en
Ecuador
mediante
técnicas
aprendizaje
automático.
Se
utilizó
un
conjunto
datos
proporcionado
por
la
Unión
Cooperativas
Transporte
Interprovincial
que
abarca
viajes
realizados
entre
2022
2024.
La
metodología
incluyó
implementación
K-means
para
segmentación
PCA
reducción
dimensional.
Inicialmente,
identificó
cuatro
clústeres,
pero
el
solapamiento
grupos
motivó
aplicación
PCA,
mejorando
separación.
Los
resultados
revelaron
grupos:
Ritmo
Diario,
Exploradores
Fin
Semana,
Nómadas
Eventos
Viajeros
Flexibles.
Esta
ofrece
información
clave
optimizar
servicios
mejorar
experiencia
del
usuario
al
ajustar
recursos
a
las
necesidades
cada
grupo.
Clustering validation by distribution hypothesis learning
Statistics and Computing,
Journal Year:
2024,
Volume and Issue:
34(6)
Published: Oct. 9, 2024
Language: Английский
Robust Parameter Optimisation of Noise-Tolerant Clustering for DENCLUE Using Differential Evolution
Mathematics,
Journal Year:
2024,
Volume and Issue:
12(21), P. 3367 - 3367
Published: Oct. 27, 2024
Clustering
samples
based
on
similarity
remains
a
significant
challenge,
especially
when
the
goal
is
to
accurately
capture
underlying
data
clusters
of
complex
arbitrary
shapes.
Existing
density-based
clustering
techniques
are
known
be
best
suited
for
capturing
arbitrarily
shaped
clusters.
However,
key
limitation
these
methods
difficulty
in
automatically
finding
optimal
set
parameters
adapted
dataset
characteristics,
which
becomes
even
more
challenging
contain
inherent
noise.
In
our
recent
work,
we
proposed
Differential
Evolution-based
DENsity
CLUstEring
(DE-DENCLUE)
optimise
DENCLUE
parameters.
This
study
evaluates
DE-DENCLUE
its
robustness
accurate
presence
noise
data.
performance
compared
against
three
other
algorithms—DPC
weighted
local
density
sequence
and
nearest
neighbour
assignment
(DPCSA),
Density-Based
Spatial
Applications
with
Noise
(DBSCAN),
Variable
Kernel
Density
Estimation–based
(VDENCLUE)—across
several
datasets
(i.e.,
synthetic
real).
The
has
consistently
shown
superior
results
models
most
different
levels.
quality
metrics
such
as
Silhouette
Index
(SI),
Davies–Bouldin
(DBI),
Adjusted
Rand
(ARI),
Mutual
Information
(AMI)
show
SI,
ARI,
AMI
values
across
at
some
cases
regarding
DBI,
DPCSA
performed
better.
conclusion,
method
offers
reliable
noise-resilient
solution
datasets.
Language: Английский
A comprehensive systematic review of machine learning in the retail industry: classifications, limitations, opportunities, and challenges
D.O. Hassan,
No information about this author
Bryar A. Hassan
No information about this author
Neural Computing and Applications,
Journal Year:
2024,
Volume and Issue:
unknown
Published: Dec. 20, 2024
Language: Английский
Exploratory Data Analysis Methods for Functional Magnetic Resonance Imaging (fMRI): A Comprehensive Review of Software Programs Used in Research
Hussain A. Jaber,
No information about this author
Basma A. Al-Ghali,
No information about this author
Muna M. Kareem
No information about this author
et al.
Al-Nahrain Journal for Engineering Sciences,
Journal Year:
2024,
Volume and Issue:
27(4), P. 491 - 500
Published: Dec. 20, 2024
This
extensive
and
thorough
review
aims
to
systematically
outline,
clarify,
examine
the
numerous
exploratory
data
analysis
techniques
that
are
employed
in
intriguing
rapidly
advancing
domain
of
functional
MRI
research.
We
will
particularly
focus
on
wide
array
software
applications
instrumental
facilitating
improving
these
complex
often
nuanced
analyses.
Throughout
this
discourse,
we
meticulously
assess
various
strengths
limitations
associated
with
each
analytical
tool,
offering
invaluable
insights
relevant
their
application
overall
efficacy
across
diverse
research
contexts
environments.
Our
aim
is
create
a
comprehensive
understanding
how
tools
can
be
best
utilized
enhance
outcomes.
Through
analysis,
aspire
equip
researchers
critical
knowledge
essential
information
could
profoundly
influence
methodological
selections
upcoming
studies.
By
carefully
considering
factors,
hope
contribute
positively
ongoing
progression
important
field
inquiry,
fostering
innovation
enhancing
impact
future
findings
Language: Английский