Published: Jan. 1, 2024
Language: Английский
Published: Jan. 1, 2024
Language: Английский
Sustainable Cities and Society, Journal Year: 2024, Volume and Issue: 115, P. 105875 - 105875
Published: Oct. 2, 2024
Language: Английский
Citations
12Remote Sensing, Journal Year: 2024, Volume and Issue: 16(16), P. 3032 - 3032
Published: Aug. 18, 2024
Rapid urbanization and climate change exacerbate the urban heat island effect, increasing vulnerability of residents to extreme heat. Although many studies have assessed vulnerability, there is a significant lack standardized criteria references for selecting indicators, building models, validating those models. Many existing approaches do not adequately meet planning needs due insufficient spatial resolution, temporal coverage, accuracy. To address this gap, paper introduces U-HEAT framework, conceptual model analyzing vulnerability. The primary objective outline theoretical foundations potential applications U-HEAT, emphasizing its nature. This framework integrates machine learning (ML) with remote sensing (RS) identify at both long-term detailed levels. It combines retrospective forward-looking mapping continuous monitoring assessment, providing essential data developing comprehensive strategies. With active capacity, enables refinement evaluation policy impacts. presented in offers sustainable approach, aiming enhance practical analysis tools. highlights importance interdisciplinary research bolstering resilience stresses need ecosystems capable addressing complex challenges posed by increased study provides valuable insights researchers, administrators, planners effectively combat challenges.
Language: Английский
Citations
8Journal of Cleaner Production, Journal Year: 2025, Volume and Issue: unknown, P. 144768 - 144768
Published: Jan. 1, 2025
Language: Английский
Citations
1Urban Climate, Journal Year: 2024, Volume and Issue: 56, P. 102084 - 102084
Published: July 1, 2024
Trees are crucial elements for improving urban microclimates by providing cooling through shading, evapotranspiration, and windbreaks. To maximise their effects, it is essential to strategically position the trees in optimal locations. However, research on optimising tree location its impact limited owing computational challenges costs. This study introduces a novel method that employs three optimisation algorithms—i.e., Non-dominated Sorting Genetic Algorithm II (NSGA-II), Particle Swarm Optimisation (PSO), Ant Colony (ACO)—to identify locations environments enhance thermal comfort. The methodology involves simulating microclimate responses placements optimised each algorithm assessing results based underscore efficacy of locations, demonstrating can significantly reduce Universal Thermal Comfort Index (UTCI) areas. Furthermore, findings suggest clustering canopies has compounding these benefits Notably, all algorithms improved UTCI. PSO demonstrated rapid identification effective configurations. ACO provided most substantial reduction air temperature, highlighting potential as an tool cooling. While efficient, NSGA-II plateaued earlier, suggesting utility scenarios where timely solutions crucial.
Language: Английский
Citations
6International Journal of Disaster Risk Reduction, Journal Year: 2025, Volume and Issue: unknown, P. 105448 - 105448
Published: April 1, 2025
Language: Английский
Citations
0Published: Jan. 1, 2024
Language: Английский
Citations
0