Parametrization of κ2-N,O-Oxazoline Preligands for Enantioselective Cobaltaelectro-Catalyzed C–H Activations DOI Creative Commons
Suman Dana, Neeraj Kumar Pandit, Philipp Boos

et al.

ACS Catalysis, Journal Year: 2025, Volume and Issue: unknown, P. 4450 - 4459

Published: Feb. 28, 2025

Enantioselective electrocatalyzed C–H activations have emerged as a transformative platform for the assembly of value-added chiral organic molecules. Despite recent progress, construction multiple C(sp3)-stereogenic centers via C(sp3)–C(sp3) bond formation has thus far proven to be elusive. In contrast, we herein report an annulative activation strategy, generating Fsp3-rich molecules with high levels diastereo- and enantioselectivity. κ2-N,O-oxazoline preligands were effectively employed in enantioselective cobalt(III)-catalyzed reactions. Using DFT-derived descriptors regression statistical modeling, performed parametrization study on modularity preligands. The resulted model describing ligands' selectivity characterized by key steric, electronic, interaction behaviors.

Language: Английский

Photocatalytic NOx removal and recovery: progress, challenges and future perspectives DOI Creative Commons
Ting Xue,

Jing Li,

Lvcun Chen

et al.

Chemical Science, Journal Year: 2024, Volume and Issue: 15(24), P. 9026 - 9046

Published: Jan. 1, 2024

The excessive production of nitrogen oxides (NO x ) from energy production, agricultural activities, transportation, and other human activities remains a pressing issue in atmospheric environment management.

Language: Английский

Citations

11

AI for organic and polymer synthesis DOI

Hong Xin,

Qi Yang, Kuangbiao Liao

et al.

Science China Chemistry, Journal Year: 2024, Volume and Issue: 67(8), P. 2461 - 2496

Published: June 26, 2024

Language: Английский

Citations

11

Exploring Chemical Reaction Space with Machine Learning Models: Representation and Feature Perspective DOI

Yuheng Ding,

Bo Qiang, Qixuan Chen

et al.

Journal of Chemical Information and Modeling, Journal Year: 2024, Volume and Issue: 64(8), P. 2955 - 2970

Published: March 15, 2024

Chemical reactions serve as foundational building blocks for organic chemistry and drug design. In the era of large AI models, data-driven approaches have emerged to innovate design novel reactions, optimize existing ones higher yields, discover new pathways synthesizing chemical structures comprehensively. To effectively address these challenges with machine learning it is imperative derive robust informative representations or engage in feature engineering using extensive data sets reactions. This work aims provide a comprehensive review established reaction featurization approaches, offering insights into selection features wide array tasks. The advantages limitations employing SMILES, molecular fingerprints, graphs, physics-based properties are meticulously elaborated. Solutions bridge gap between different will also be critically evaluated. Additionally, we introduce frontier pretraining, holding promise an innovative yet unexplored avenue.

Language: Английский

Citations

10

Recommending reaction conditions with label ranking DOI Creative Commons
Eunjae Shim, Ambuj Tewari, Tim Cernak

et al.

Chemical Science, Journal Year: 2025, Volume and Issue: unknown

Published: Jan. 1, 2025

Label ranking is introduced as a conceptually new means for prioritizing experiments. Their simplicity, ease of application, and the use aggregation facilitate their ability to make accurate predictions with small datasets.

Language: Английский

Citations

1

Parametrization of κ2-N,O-Oxazoline Preligands for Enantioselective Cobaltaelectro-Catalyzed C–H Activations DOI Creative Commons
Suman Dana, Neeraj Kumar Pandit, Philipp Boos

et al.

ACS Catalysis, Journal Year: 2025, Volume and Issue: unknown, P. 4450 - 4459

Published: Feb. 28, 2025

Enantioselective electrocatalyzed C–H activations have emerged as a transformative platform for the assembly of value-added chiral organic molecules. Despite recent progress, construction multiple C(sp3)-stereogenic centers via C(sp3)–C(sp3) bond formation has thus far proven to be elusive. In contrast, we herein report an annulative activation strategy, generating Fsp3-rich molecules with high levels diastereo- and enantioselectivity. κ2-N,O-oxazoline preligands were effectively employed in enantioselective cobalt(III)-catalyzed reactions. Using DFT-derived descriptors regression statistical modeling, performed parametrization study on modularity preligands. The resulted model describing ligands' selectivity characterized by key steric, electronic, interaction behaviors.

Language: Английский

Citations

1