Human embryo stage classification using an enhanced R(2 + 1)D model and dynamic programming with optimized datasets
Biomedical Signal Processing and Control,
Journal Year:
2025,
Volume and Issue:
107, P. 107841 - 107841
Published: March 28, 2025
Language: Английский
Predictive potential of combined secretomics and image-based morphometry as a non-invasive method for selecting implanting embryos
Andrea Palomar,
No information about this author
Roberto Yagüe-Serrano,
No information about this author
Juan Vicente Martínez-Sanchis
No information about this author
et al.
Reproductive Biology and Endocrinology,
Journal Year:
2025,
Volume and Issue:
23(1)
Published: April 12, 2025
Non-invasive
selection
of
human
embryos
for
in
vitro
fertilization
purposes
is
still
a
major
challenge
to
pursue.
Therefore,
this
study
aims
identify
non-invasive
morphometric
and
secretomic
parameters
that
reliably
select
the
with
highest
likelihood
implantation
prior
embryo
transfer
(ET).
Prospective
single-centre
cohort
study.
Thirty-two
day
5
blastocysts
derived
from
28
couples
undergoing
intracytoplasmic
sperm
injection
(ICSI)
ET
between
January
2023
April
2023.
Patients
were
split
according
their
outcome,
confirmed
serum
beta-human
chorionic
gonadotropin
(b-hCG)
levels
>
mIU/mL
nine
days
post-SET.
Ninety-two
proteins
involved
embryonic
developmental
programming
measured
spent
blastocyst
media
(SBM)
using
protein
extension
assay.
Sparse
PLS-DA
(sPLS-DA)
was
used
principal
component
analysis.
Forty-seven
related
trophoblast,
inner
cell
mass
blastocele
dimension
evaluated
microphotographs
ImageJ
software.
T-test
Mann-Whitney
tests
respectively
compare
measurements
normalized
expression
secreted
(NPx)
implanted
or
not.
Predictive
value
models
based
on
proteins.
Chi-squared
showed
no
significant
differences
transferred
stage,
quality,
state
subgroups.
Implanting
(n
=
14)
presented
significantly
different
shape
descriptors
(i.e.,
internal
circularity,
roundness,
axis
ratio,
angle
trophoblast
mean
width)
than
non-implanting
13).
Among
quantifiable
(86/92)
SBM
eleven
implanting
blastocysts,
NPx
sPLS-DA
analysis
revealed
three
differentially
expressed
Matrilin-2
(MATN2)
legumain
(LGMN)
elevated
(p
<
0.01
both
cases)
while
thymosin
beta-10
(TMSB10)
decreased
0.05)
embryos.
exclusively
profiles
accurately
discriminated
outcomes
(AUC
0.71).
The
model
integrating
blastocysts'
ratio
MATN2
TMSB10
had
exceptional
negative
positive
predictive
power
(100%
90.91%,
respectively;
AUC
0.93).
Morphometric
emerge
as
promising
candidate
markers
selection.
Language: Английский
Ensemble learning for fetal ultrasound and maternal–fetal data to predict mode of delivery after labor induction
Scientific Reports,
Journal Year:
2024,
Volume and Issue:
14(1)
Published: July 3, 2024
Abstract
Providing
adequate
counseling
on
mode
of
delivery
after
induction
labor
(IOL)
is
utmost
importance.
Various
AI
algorithms
have
been
developed
for
this
purpose,
but
rely
maternal–fetal
data,
not
including
ultrasound
(US)
imaging.
We
used
retrospectively
collected
clinical
data
from
808
subjects
submitted
to
IOL,
totaling
2024
US
images,
train
models
predict
vaginal
(VD)
and
cesarean
section
(CS)
outcomes
IOL.
The
best
overall
model
only
(F1-score:
0.736;
positive
predictive
value
(PPV):
0.734).
imaging
employed
fetal
head,
abdomen
femur
showing
limited
discriminative
results.
images
0.594;
PPV:
0.580).
Consequently,
we
constructed
ensemble
test
whether
could
enhance
the
model.
included
0.689;
0.693),
presenting
a
false
negative
interesting
trade-off.
accurately
predicted
CS
4
additional
cases,
despite
misclassifying
20
VD,
resulting
in
6.0%
decrease
average
accuracy
compared
Hence,
integrating
into
latter
can
be
new
development
assisting
counseling.
Language: Английский
A review of artificial intelligence applications in in vitro fertilization
Journal of Assisted Reproduction and Genetics,
Journal Year:
2024,
Volume and Issue:
42(1), P. 3 - 14
Published: Oct. 14, 2024
Language: Английский
Opportunities and limitations of introducing artificial intelligence technologies into reproductive medicine
V. A. Lebina,
No information about this author
O. Kh. Shikhalakhova,
No information about this author
A. A. Kokhan
No information about this author
et al.
Obstetrics Gynecology and Reproduction,
Journal Year:
2025,
Volume and Issue:
unknown
Published: March 14, 2025
Given
the
increasing
problem
of
infertility
in
Russian
Federation,
assisted
reproductive
technologies
(ART)
have
proven
to
be
one
most
effective
treatments
for
this
condition.
Notably,
introduction
ART
methods,
particularly
vitro
fertilization
(IVF),
has
led
markedly
increased
birth
rates
over
past
two
decades.
Studies
show
that
machine
learning
algorithms
can
process
images
embryos
assess
their
quality,
thus
facilitating
selection
viable
among
them
transfer.
There
are
ethical
and
technical
barriers
hindering
widespread
adoption
artificial
intelligence
(AI)
clinical
practice,
including
concerns
data
privacy
as
well
a
need
train
specialists
deal
with
new
technologies.
AI
analyze
vast
amounts
data,
medical
histories
research
results,
more
accurately
predict
pregnancy
outcomes.
This
enables
doctors
make
justified
decisions.
In
future,
will
able
patient
efficiently,
helping
identify
causes
at
earlier
stages.
Language: Английский
Artificial intelligence in human reproduction
Archives of Medical Research,
Journal Year:
2024,
Volume and Issue:
55(8), P. 103131 - 103131
Published: Nov. 29, 2024
Language: Английский
FertilitY Predictor—a machine learning-based web tool for the prediction of assisted reproduction outcomes in men with Y chromosome microdeletions
Journal of Assisted Reproduction and Genetics,
Journal Year:
2024,
Volume and Issue:
unknown
Published: Dec. 9, 2024
Language: Английский
Noninvasive testing of preimplantation embryos in assisted reproductive technology
IntechOpen eBooks,
Journal Year:
2024,
Volume and Issue:
unknown
Published: May 6, 2024
One
approach
to
improving
the
success
of
assisted
reproductive
technology
(ART)
is
careful
selection
embryos
prior
implantation.
Although
preimplantation
genetic
testing
(PGT)
widely
employed
for
embryo
selection,
it
needs
biopsy
and
detrimental
embryos.
Thus,
noninvasive
offers
new
possibilities
evaluating
quality.
Here,
we
reviewed
current
progression
technologies,
including
use
microscopy
images
combined
with
artificial
intelligence
(AI)
select
based
on
morphology,
minimally
invasive
PGT
blastocoel
fluid
spent
culture
medium,
omics
analysis
molecules
in
medium
assess
developmental
potential
More
importantly,
using
AI
various
type
data
each
will
greatly
improve
assessments.
these
cutting-edge
technologies
offer
fresh
insights
into
have
enhance
quality
efficiency
ART
procedures.
Language: Английский
Predicting implantation by using dual AI system incorporating three‐dimensional blastocyst image and conventional embryo evaluation parameters—A pilot study
Yasunari Miyagi,
No information about this author
Toshihiro Habara,
No information about this author
Rei Hirata
No information about this author
et al.
Reproductive Medicine and Biology,
Journal Year:
2024,
Volume and Issue:
23(1)
Published: Jan. 1, 2024
Abstract
Purpose
To
investigate
the
usefulness
of
an
original
dual
artificial
intelligence
(AI)
system,
in
which
first
AI
system
eliminates
background
sliced
tomographic
blastocyst
images,
then
second
predicts
implantation
success
using
three‐dimensional
(3D)
reconstructed
images
sequential
and
conventional
embryo
evaluation
parameters
(CEE)
such
as
maternal
age.
Methods
Patients
(from
June
2022
to
July
2023)
could
opt
out
there
was
additional
information
on
Web
site
clinic.
Implantation
non‐implantation
cases
numbered
458
519,
respectively.
A
total
10
747
a
time‐lapse
incubator
with
CEE
were
obtained.
Results
The
statistic
values
by
0.774
±
0.033
(mean
standard
error)
for
area
under
characteristic
curve,
0.727
sensitivity,
0.719
specificity,
predictive
value
positive
test,
negative
0.723
accuracy,
Conclusions
predicting
handling
3D
data
demonstrated.
This
may
be
feasible
option
clinical
practice.
Language: Английский
Применение цифровых продуктов в области вспомогательных репродуктивных технологий
А Е Андрейченко,
No information about this author
Е. С. Ахмад,
No information about this author
Динара Валеева
No information about this author
et al.
Published: Nov. 20, 2024
Целью
подготовки
данного
обзора
является
изучение
применения
цифровых
продуктов
в
рамках
программы
вспомогательных
репродуктивных
технологий
(ВРТ)
с
точки
зрения
рассмотрения
информатизации
регистров
и
методологической
поддержки
проведения
ВРТ
анализа
использования
подходов
на
разных
этапах
цикла
ВРТ.
В
отечественных
международных
базах
данных
были
отобраны
проанализированы
две
группы
статьей,
посвященные
регистрам
алгоритмам
машинного
обучения
за
последние
5
лет.
Исследования
алгоритмов
распределены
по
основным
этапам
ВРТ,
также
выделены
основные
преимущества
недостатки
выполненных
работ.
Разработка
требует
формирования
набора
последующего
признаков,
при
этом
данный
процесс
будет
зависеть
от
рассматриваемого
назначения
алгоритма
вида
анализированных
данных.
данной
работе
был
приведен
этапы
разработки
моделей
для
предсказания
исхода
На
основании
выполненного
опубликованных
работ
установлены
ограничения
исследований
их
перспектива.
Было
показано,
что
использование
качестве
принятия
решения
врачами
отборе
эмбрионов
демонстрировало
большую
точность.
Для
внедрения
должно
быть
проведено
подтверждение
безопасности
эффективности
разрабатываемых
систем
проспективных
рандомизированных
клинических
исследований,
которые
обладают
наивысшей
степенью
доказательности.
Также
выявлен
недостаток
исследования
экономической
целесообразности
ИИ,
которая
должна
оценена
отдельных
научных
исследований.
Language: Русский