Single and Multi-Objective Optimal Power Flow Based on JAYA Algorithm with Teaching-Learning Based Optimization
Research Square (Research Square),
Journal Year:
2025,
Volume and Issue:
unknown
Published: Feb. 17, 2025
Abstract
This
paper
deals
with
the
Optimal
Power
Flow
(OPF)
in
an
IEEE
standard
bus
(30-bus)
power
system
and
presents
a
multi-objective
optimization
approach
to
minimize
generation
costs,
active
losses
voltage
deviations.
The
OPF
problem
is
of
critical
importance
for
reliable,
efficient
economical
operation
systems.
However,
solution
this
complex
due
its
nonlinear
nature
large
number
constraints.
Conventional
methods
are
often
insufficient
overcome
challenges
inherent
OPF.
In
addressing
these
challenges,
study
employs
metaheuristic
algorithms,
namely
Teaching-Learning
Based
Optimisation
(TLBO),
JAYA
hybrid
TLBO-JAYA,
enhance
efficiency
convergence
speed
process.
To
manage
problem,
Pareto
optimisation
utilised
identify
set
that
balances
conflicting
objectives.
outcomes
demonstrate
TLBO-JAYA
algorithm
offers
balanced
enhancement
terms
cost,
loss
stability,
thereby
providing
versatile
framework
contemporary
These
findings
underscore
potential
algorithms
problems
Language: Английский
KIRŞEHİR’İN RÜZGAR ENERJİSİ POTANSİYELİ VE İÇ ANADOLU BÖLGESİ KURULU RÜZGAR ENERJİSİ SANTRALLERİNİN GÜÇ ANALİZİ
Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi,
Journal Year:
2025,
Volume and Issue:
28(1), P. 189 - 201
Published: March 3, 2025
Türkiye’nin
zengin
ve
çeşitlilik
içeren
yenilenebilir
enerji
potansiyeli,
son
yıllarda
hızla
değerlendirilmeye
başlanmıştır.
Özellikle
rüzgar
enerjisi,
elektrik
üretiminde
önemli
bir
rol
oynamakta
kurulu
güç
içerisindeki
payını
sürekli
artırmaktadır.
Çevre
dostu
kaynağı
olan
kırsal
bölgelerde
de
yüksek
üretim
kapasitesine
sahiptir.
Bu
çalışmada,
İç
Anadolu
Bölgesi
illerinin
potansiyeli
santral
kapasiteleri;
nüfus
gelişmişlik
düzeyleriyle
ilişkilendirilerek
incelenmiştir.
Özel
olarak
Kırşehir
bölgesi
ele
alınmış
2024-2028
yılları
arasında
bölgedeki
enerjisi
kapasitesi
Yapay
Sinir
Ağları
(YSA)
tabanlı
model
ile
tahmin
edilmiştir.
Analiz
sonuçlarına
göre,
2024
yılında
potansiyelinde
yaklaşık
%1’lik
düşüş
yaşanması
öngörülmüş,
ancak
2025-2028
her
yıl
artış
kaydedilmiştir.
2023
yılındaki
üretime
kıyasla,
2026
tahmini
üretimi
%3,5
oranında
göstermiştir.
Aynı
şekilde,
2027
2028
yıllarında
da
yükseliş
devam
etmiştir.
Çalışma,
Bölgesi’nin
potansiyelini
detaylı
şekilde
değerlendirirken,
ilinde
yer
alan
santrali
özelinde
arasındaki
tahminini
ortaya
koymuştur.
Sonuç
olarak,
bölgenin
mevcut
potansiyel
yıllara
göre
değişimi
kapsamlı
analiz
Research on Photovoltaic Long-Term Power Prediction Model Based on Superposition Generalization Method
Yun Chen,
No information about this author
Jilei Liu,
No information about this author
Bei Liu
No information about this author
et al.
Processes,
Journal Year:
2025,
Volume and Issue:
13(5), P. 1263 - 1263
Published: April 22, 2025
The
integration
of
renewable
energy
sources,
specifically
photovoltaic
generation,
into
the
grid
at
a
large
scale
has
significantly
heightened
volatility
and
unpredictability
power
system.
Consequently,
this
presents
formidable
challenges
to
ensuring
reliable
operation
grid.
This
study
introduces
novel
stacked
model
for
prediction,
integrating
multiple
conventional
data
processing
methods
as
base
learners,
including
Group
Method
Data
Handling
(GMDH),
Least
Squares
Support
Vector
Machine
(LSSVM),
Radial
Basis
Function
Neural
Network
(RBFNN),
Emotional
(ENN).
A
Backpropagation
(BPNN)
serves
meta-learner,
utilizing
outputs
learners
input
features
enhance
overall
prediction
accuracy
by
mitigating
individual
errors.
To
assess
model’s
effectiveness,
five
evaluation
metrics
are
employed:
Bayesian
Information
Criterion
(BIC),
Percent
Mean
Average
Relative
Error
(PMARE),
Legates
McCabe
Index
(LM),
Absolute
Deviation
(MAD),
Root
Square
(RMSE),
long-term
stability
in
output
forecasting.
Additionally,
effectiveness
validated
using
operational
from
plants
particular
province
China.
results
indicate
that
model,
after
training,
testing,
validation
on
performance
metrics,
surpasses
baseline
single
models
performance.
Language: Английский
RR intervals prediction method for cardiovascular patients optimized LSTM based on ISSA
Wenjie Yu,
No information about this author
Zhilin Pan,
No information about this author
Dayang Tang
No information about this author
et al.
Biomedical Signal Processing and Control,
Journal Year:
2024,
Volume and Issue:
100, P. 106904 - 106904
Published: Sept. 23, 2024
Language: Английский
Wind Turbine Power Curve Fitting Using Mountain Gazelle Optimizer and Parametric Functions
Mehmet Yeşilbudak,
No information about this author
Ahmet Özcan
No information about this author
Published: May 27, 2024
Language: Английский
Photovoltaic Power Prediction with Teaching Learning Based Optimization Algorithm
Gazi University Journal of Science Part A Engineering and Innovation,
Journal Year:
2024,
Volume and Issue:
unknown
Published: Dec. 1, 2024
The
need
for
electrical
energy
has
increased
considerably
due
to
technological
developments.
Reducing
costs
and
losses,
especially
in
the
supply
of
energy,
is
among
goals
companies.
Photovoltaic
been
an
important
alternative
reducing
costs.
However,
there
are
significant
power
quality
problems
transferring
generated
photovoltaic
grid.
Therefore,
needs
be
accurately
estimated
transferred
grid
smoothly.
In
literature,
many
forecasting
models
have
used
forecasting.
Each
these
using
different
input
parameters,
estimation
intervals,
algorithms.
This
paper
was
conducted
Teaching-Learning
Based
Optimization
(TLBO)
algorithm
as
approach
models.
According
results,
root
mean
square
error
(RMSE)
test
subset
obtained
270.32
kW,
absolute
percentage
(MAPE)
found
3.87%.
These
results
indicate
that
TLBO
demonstrates
high
accuracy
provides
effective
model
this
field.
Language: Английский