Çukurova Üniversitesi Mühendislik Fakültesi Dergisi,
Journal Year:
2023,
Volume and Issue:
38(2), P. 441 - 449
Published: July 28, 2023
Meta-sezgisel
optimizasyon
yöntemleri
geleneksel
algoritmalarla
çözümün
çok
maliyetli
olacağı
büyük
ölçekli
gerçek
hayat
problemleri
için
başarılı
sonuçlar
sergilemekte
ve
birçok
alandan
araştırmacının
ilgi
odağı
haline
gelmektedir.
Bu
alana
duyulan
sayesinde
genetik,
fizik,
biyoloji,
müzik
gibi
ilhamını
çeşitli
kaynaklardan
alan
araştırmacılar,
yeni
meta-sezgisel
algoritmalar
oluşturmaya
devam
etmektedir.
Şubat
2022’de
yayımlanan
Bal
Porsuğu
Algoritması
(Honey
Badger
Algorithm,
HBA),
bal
porsuğunun
yiyecek
arama
stratejilerine
dayandırmaktadır.
çalışmada
HBA’nın
yanı
sıra
yazının
başarısı
kanıtlanmış
algoritmalarından
olan
Genetik
Algoritma
(Genetik
GA),
Parçacık
Sürü
(Partical
Swarm
Optimization,
PSO),
Yapay
Arı
Kolonisi
(Artificial
Bee
Colony,
ABC),
Karınca
(Ant
Colony
ACO),
Benzetimli
Tavlama
(Simulated
Annealing,
SA)
algoritmaları,
bir
yapı
problemi
“üç
elemanlı
kafes
sisteminin
ağırlık
maliyet
minimizasyonu”
na
uygulanmaktadır.
Elde
edilen
sonuçlara
göre
HBA’
nın,
GA,
ABC,
ACO,
SA
algoritmalarına
kıyasla
daha
iyi
yakınsama
hızına
değerlere
ulaştığı
gözlemlenmektedir.
Alexandria Engineering Journal,
Journal Year:
2024,
Volume and Issue:
91, P. 348 - 367
Published: Feb. 19, 2024
Honey
badger
algorithm
(HBA)
is
a
recent
swarm-based
metaheuristic
that
excels
in
simplicity
and
high
exploitation
capability.
However,
it
suffers
from
some
limitations
including
weak
exploration
capacity
an
imbalance
between
exploitation.
In
this
paper,
improved
honey
called
ODEHBA
proposed
to
improve
the
performance
of
basic
HBA.
Firstly,
orthogonal
opposition-based
learning
technique
employed
assist
population
escaping
local
optimum.
Secondly,
differential
evolution
utilized
ensure
enrichment
diversity
enhance
convergence
speed.
Finally,
capability
boosted
by
equilibrium
pool
strategy.
To
validate
efficacy
ODEHBA,
compared
with
13
well-known
algorithms
on
CEC2022
benchmark
test
sets.
Friedman
Wilcoxon
rank-sum
are
assess
ODEHBA.
Furthermore,
three
engineering
design
problems
Internet
Vehicles
(IoV)
routing
problem
applied
The
simulation
results
demonstrate
solving
complex
numerical
problems,
design,
IoV
problems.
This
holds
significant
practical
implications
for
cost
reduction
resource
utilization.
Franklin Open,
Journal Year:
2024,
Volume and Issue:
8, P. 100141 - 100141
Published: Aug. 10, 2024
Metaheuristic
algorithms
are
commonly
used
in
solving
complex
and
NP-hard
optimization
problems
various
fields.
These
have
become
popular
because
of
their
ability
to
explore
exploit
solutions
problem
domains.
Honey
Badger
Algorithm
(HBA)
is
a
population-based
metaheuristic
algorithm
inspired
by
the
dynamic
hunting
strategy
honey
badgers,
utilizing
digging-seeking
techniques.
Since
its
introduction
2020,
HBA
has
garnered
widespread
attention
been
applied
across
This
review
aims
comprehensively
survey
improvement
application
problems.
Additionally,
conducts
meta-analysis
HBA's
improvements,
hybridization
since
introduction.
According
result
survey,
52
studies
presented
improved
using
chaotic
maps,
levy
flight
mechanism,
adaptive
mechanisms,
transfer
functions,
multi-objective
mechanism
opposition
based
learning
techniques,
20
hybrid
with
other
metaheuristics
101
uses
original
for
wide
acceptance
within
research
community
stems
from
straightforwardness,
ease
use,
efficient
computational
time,
accelerated
convergence
speed,
high
efficacy,
capability
address
different
kind
issues,
distinguishing
it
well-known
approches
presented.
Water Science & Technology Water Supply,
Journal Year:
2024,
Volume and Issue:
24(3), P. 847 - 864
Published: Feb. 26, 2024
Abstract
Water
scarcity
is
recognized
as
a
critical
global
concern
and
one
viable
solution
involves
extracting
water
from
atmospheric
humidity
by
leveraging
subterranean
coldness.
This
study
meticulously
evaluates
the
operational
efficacy
of
production
system
examining
four
pivotal
factors:
buried
pipe
length
(TL),
air
flow
rate
(AFR),
temperature
(AT),
(AH).
A
positive
correlation
between
these
variables
vapor
established,
with
AT
exerting
most
pronounced
influence.
Significantly,
analysis
variance
reveals
main
interactive
effects
variables,
except
for
TL
×
AFR,
at
5%
significance
level.
To
enhance
understanding
intricate
interplay
among
factors,
proficient
least
squares
support
vector
machines
model
devised,
employing
radial
basis
function
kernel.
demonstrates
an
impressive
98%
concurrence
projected
empirical
data,
minimal
error
0.66
mL
5.99%.
An
in-depth
sensitivity
underscores
differential
impact
AT,
AH,
TL,
AFR
on
(WV)
prediction.
Optimal
values
3.98
m,
6.89
m3/h,
46.30
°C,
86.62%
respectively,
are
obtained
through
subsequent
optimization
independent
using
genetic
algorithms,
resulting
in
notable
23.61
mL.