Advancing plant biology through deep learning-powered natural language processing DOI
Shuang Peng, Loïc Rajjou

Plant Cell Reports, Journal Year: 2024, Volume and Issue: 43(8)

Published: Aug. 1, 2024

Language: Английский

From Industry 5.0 to Forestry 5.0: Bridging the gap with Human-Centered Artificial Intelligence DOI Creative Commons

Andreas Holzinger,

Janine Schweier, Christoph Gollob

et al.

Current Forestry Reports, Journal Year: 2024, Volume and Issue: 10(6), P. 442 - 455

Published: Sept. 11, 2024

Language: Английский

Citations

11

Remote sensing revolutionizing agriculture: Toward a new frontier DOI
Xiaoding Wang, Haitao Zeng, Xu Yang

et al.

Future Generation Computer Systems, Journal Year: 2025, Volume and Issue: 166, P. 107691 - 107691

Published: Jan. 6, 2025

Language: Английский

Citations

1

Assessment of Metaverse wearable technologies for smart livestock farming through a neuro quantum spherical fuzzy decision-making model DOI
Fatih Ecer, İlkin Yaran Ögel, Hasan Dınçer

et al.

Expert Systems with Applications, Journal Year: 2024, Volume and Issue: 255, P. 124722 - 124722

Published: July 11, 2024

Language: Английский

Citations

6

Tendencias Actuales en la aplicación del Bigdata y Agricultura Inteligente un Enfoque Bibliométrico DOI Creative Commons
Carlos Arturo Carvajal Chávez

Estudios y Perspectivas Revista Científica y Académica, Journal Year: 2025, Volume and Issue: 5(1), P. 310 - 332

Published: Jan. 29, 2025

La necesidad por alimentar a la población mundial se ha convertido en un desafío nuestra sociedad. producción agrícola requiere de tecnificación que le permita cumplir con esta población. En este sentido Big Data convierte una las herramientas relevantes permiten gestionar y optimizar los recursos naturales e insumos agrícolas convirtiendo actividades el campo agricultura inteligente innova mejora resultados producción. El presente trabajo busca responder pregunta ¿Cuáles son tendencias actuales aplicación bigdata inteligente?. A través análisis bibliométrico buscamos interrogante determinar brecha investigación. Los alcanzados nos muestran 7 brechas investigación: bigdata, blockchain, smart farming, security, artificial intelligence internet of things, estos determinantes áreas investigación crecimiento requieren ser exploradas sus permitirán mejorar producción, alto nivel control su desarrollo sostenible sustentable.

Citations

0

The journey of challenges and triumphs: a systematic literature review of the dynamic evolution of human-centered artificial intelligence in education DOI
Xiaojiao Chen, Zhebing Hu, Yuanyuan Li

et al.

Interactive Learning Environments, Journal Year: 2025, Volume and Issue: unknown, P. 1 - 26

Published: March 10, 2025

Language: Английский

Citations

0

Leaf area index (LAI) prediction using machine learning and UAV based vegetation indices DOI
Saddam Hussain, Fitsum T. Teshome, Boaz B. Tulu

et al.

European Journal of Agronomy, Journal Year: 2025, Volume and Issue: 168, P. 127557 - 127557

Published: March 11, 2025

Language: Английский

Citations

0

On the disagreement problem in Human-in-the-Loop federated machine learning DOI Creative Commons

Matthias J. M. Huelser,

Heimo Mueller,

Natalia Díaz-Rodríguez

et al.

Journal of Industrial Information Integration, Journal Year: 2025, Volume and Issue: unknown, P. 100827 - 100827

Published: March 1, 2025

Language: Английский

Citations

0

Enhancing rice yield and farmer welfare: Overcoming barriers to IPB 3S rice adoption in Indonesia DOI Creative Commons

Suparman Suparman,

Pudji Muljono, Amiruddin Saleh

et al.

Open Agriculture, Journal Year: 2025, Volume and Issue: 10(1)

Published: Jan. 1, 2025

Abstract Food security in Indonesia faces challenges due to declining domestic rice production; therefore, technological innovation is required increase productivity. This study focuses on the IPB 3S variety, which has productivity advantages of up 11.23 tons/ha and disease resistance. Despite these advantages, farmers’ adoption this variety remains low. aimed analyze benefits, barriers, communication strategies that can accelerate 3S. research uses a mixed approach, namely quantitative method through questionnaire administered 56 farmers Karawang, as well qualitative in-depth interviews Focus Group Discussion (FGD). The results showed main benefits were increased yield (average 3.70) resistance, but obstacles included limited seed distribution, relatively low selling prices, technical difficulties, such grain threshing process. Recommendations include strengthening distribution network cooperation between universities, government, producers; improving quality market attractiveness; developing supporting technologies appropriate harvesting tools. In addition, counseling digital media need be optimized adoption. implementation measures expected support national food improve welfare.

Language: Английский

Citations

0

REASSESSING LEGAL RECOGNITION OF AI: HUMAN DIGNITY AND THE CHALLENGE OF AI AS A LEGAL SUBJECT IN INDONESIA DOI Creative Commons
Hari Sutra Disemadi,

Lu Sudirman

MASALAH-MASALAH HUKUM, Journal Year: 2025, Volume and Issue: 54(1), P. 1 - 12

Published: March 27, 2025

The rapid development of artificial intelligence (AI) presents complex challenges in legal theory, particularly regarding the question AI as a subject. As becomes increasingly capable creative work and decision-making, arises whether it should be recognized legally an entity its own right. This study explores implications recognizing subject through lens Immanuel Kant's philosophy, focusing on human dignity. Kant argues that dignity is intrinsic, grounded capacity for rational thought moral responsibility, characteristic lacks. Thus, risks undermining by equating beings with entities do not possess autonomy or ethical awareness. examines current framework Indonesia, highlighting lack clear regulation AI, philosophical, ethical, practical considerations involved treatment AI. It treated tool, subject, ensuring remains cornerstone system. paper concludes advocating fragmented, sector-specific approach to more focused oversight while protecting

Language: Английский

Citations

0

Deep learning for lameness level detection in dairy cows DOI
Shahid Ismail, Moises Díaz, Miguel A. Ferrer

et al.

Engineering Applications of Artificial Intelligence, Journal Year: 2025, Volume and Issue: 151, P. 110611 - 110611

Published: April 3, 2025

Language: Английский

Citations

0