Synthetic Data Generation in Healthcare: A Scoping Review of reviews on domains, motivations, and future applications DOI Creative Commons
Miguel Rujas,

Rodrigo Martín Gómez del Moral Herranz,

Giuseppe Fico

et al.

medRxiv (Cold Spring Harbor Laboratory), Journal Year: 2024, Volume and Issue: unknown

Published: Aug. 9, 2024

Abstract The development of Artificial Intelligence (AI) in the healthcare sector is generating a great impact. However, one primary challenges for implementation this technology access to high-quality data due issues collection and regulatory constraints, which synthetic an emerging alternative. This Scoping review analyses reviews from past 10 years three different databases (i.e., PubMed, Scopus, Web Science) identify domains where are currently generated, motivations behind their creation, future uses, limitations, types data. A total 13 main were identified, with Oncology, Neurology, Cardiology being most frequently mentioned. Five principal uses also identified. Furthermore, it was found that predominant type generated unstructured, particularly images. Finally, several work directions suggested, including exploring new less commonly used (e.g., video text), developing evaluation benchmark standard generative models specific domains.

Language: Английский

Color Fusion Effect on Deep Learning Classification of Uveal Melanoma DOI Creative Commons
Xincheng Yao, ALBERT DADZIE,

Sabrina Iddir

et al.

Research Square (Research Square), Journal Year: 2023, Volume and Issue: unknown

Published: Nov. 8, 2023

Reliable differentiation of uveal melanoma and choroidal nevi is crucial to guide appropriate treatment, preventing unnecessary procedures for benign lesions ensuring timely treatment potentially malignant cases. The purpose this study validate deep learning classification nevi, evaluate the effect color fusion options on performance.

Language: Английский

Citations

3

Development and Validating an Explainable Model Based on Clinlabomics to Screen Retinoblastoma DOI

Jun Ren,

Jianing Wu, Yingzhu Li

et al.

Published: Jan. 1, 2024

Language: Английский

Citations

0

Estudo de Modelos baseados em Redes Neurais Profundas para a Classificação de Tumores Melanocíticos Conjuntivais DOI Open Access

Rafael B. dos Santos,

Matheus Giovanni Pires, Fabiana Cristina Bertoni

et al.

Published: June 25, 2024

O melanoma conjuntival é uma neoplasia maligna, que geralmente se apresenta como lesão nodular pigmentada. Casos variantes com diversas formas atípicas podem atrasar a identificação. Com o intuito de auxiliar médico no diagnóstico precoce, minimizando os riscos ao paciente, este trabalho tem objetivo realizar um estudo comparativo algoritmos para classificar tumores melanocíticos conjuntivais. Para isso, foram avaliados modelos baseados em Redes Neurais Convolucionais classificação binária e multiclasse dos tumores, partir VGG16, Xception MobileNetV2, utilizando técnica Transfer Learning melhorar generalização modelos. final da imagem, foi realizada abordagem baseada assembleia classificadores, composta pelos PMC, SVM KNN. utilizou base dados 406 imagens, aplicando técnicas balanceamento dados, SMOTE ADASYN. encontrar modelo melhor desempenho, usada validação cruzada 5-folds. Considerando todos testes realizados, Ensemble MobileNetV2 obteve melhores resultados.

Citations

0

Synthetic Data Generation in Healthcare: A Scoping Review of reviews on domains, motivations, and future applications DOI Creative Commons
Miguel Rujas,

Rodrigo Martín Gómez del Moral Herranz,

Giuseppe Fico

et al.

medRxiv (Cold Spring Harbor Laboratory), Journal Year: 2024, Volume and Issue: unknown

Published: Aug. 9, 2024

Abstract The development of Artificial Intelligence (AI) in the healthcare sector is generating a great impact. However, one primary challenges for implementation this technology access to high-quality data due issues collection and regulatory constraints, which synthetic an emerging alternative. This Scoping review analyses reviews from past 10 years three different databases (i.e., PubMed, Scopus, Web Science) identify domains where are currently generated, motivations behind their creation, future uses, limitations, types data. A total 13 main were identified, with Oncology, Neurology, Cardiology being most frequently mentioned. Five principal uses also identified. Furthermore, it was found that predominant type generated unstructured, particularly images. Finally, several work directions suggested, including exploring new less commonly used (e.g., video text), developing evaluation benchmark standard generative models specific domains.

Language: Английский

Citations

0