Jurnal Algoritma,
Journal Year:
2024,
Volume and Issue:
21(1), P. 332 - 342
Published: July 29, 2024
Korosi
merupakan
tantangan
signifikan
bagi
daya
tahan
material,
yang
seringkali
menyebabkan
kerugian
ekonomi
besar.
Penelitian
ini
memanfaatkan
teknik
Machine
Learning
(ML)
untuk
memprediksi
efektivitas
senyawa
obat
sebagai
inhibitor
korosi.
Kami
menggunakan
lima
algoritma
ML
menonjol:
Regresi
Linear,
Support
Vector
Machines
(SVM),
K-Nearest
Neighbors
(KNN),
Random
Forest,
dan
XGBoost.
Model-model
dilatih
dievaluasi
dataset
terdiri
dari
14
fitur
molekuler
dengan
efisiensi
inhibisi
korosi
(IE%)
variabel
target.
Hasil
pelatihan
model
awal
mengidentifikasi
Forest
XGBoost
berkinerja
terbaik
berdasarkan
metrik
seperti
Mean
Squared
Error
(MSE),
Root
(RMSE),
Absolute
(MAE),
R-squared
(R²).
Penyetelan
hiperparameter
lebih
lanjut
GridSearchCV
menunjukkan
bahwa
XGBoost,
setelah
penyetelan,
secara
mengungguli
lainnya,
mencapai
kesalahan
terendah
nilai
R²
tertinggi,
akurasi
prediktif
superior
aplikasi
ini.
Temuan
menegaskan
potensi
ML,
khususnya
dalam
meningkatkan
pemodelan
korosi,
sehingga
memberikan
wawasan
berharga
bidang
ilmu
Journal of Multiscale Materials Informatics,
Journal Year:
2024,
Volume and Issue:
1(1), P. 22 - 37
Published: April 29, 2024
This
comprehensive
review
delves
into
the
realm
of
green
corrosion
inhibitors
for
iron
alloys,
focusing
on
a
thorough
exploration
guided
by
data-driven
investigation,
density
functional
theory
(DFT)
simulations,
and
experimental
validation.
Harnessing
potential
plant
extracts,
this
study
scrutinizes
their
effectiveness
in
mitigating
alloys
through
multi-faceted
approach.
By
integrating
computational
modeling
with
empirical
experimentation,
deeper
understanding
inhibitive
mechanisms
is
achieved,
offering
insights
practical
application.
The
synthesizes
findings
from
diverse
studies,
elucidating
pivotal
role
DFT
predicting
inhibitor
behavior
optimizing
performance.
Furthermore,
validation
provides
crucial
theoretical
predictions,
highlighting
synergistic
relationship
between
simulation
real-world
Through
journey
exploration,
underscores
promise
derived
natural
sources,
paving
way
sustainable
control
practices
alloys.
Artificial Intelligence Chemistry,
Journal Year:
2024,
Volume and Issue:
2(2), P. 100073 - 100073
Published: July 10, 2024
In
this
investigation,
a
quantitative
structure-property
relationship
(QSPR)
model
coupled
with
quantum
neural
network
(QNN)
was
used
to
explore
the
corrosion
inhibition
efficiency
(CIE)
of
quinoxaline
compounds.
Integrating
chemical
properties
(QCP)
features
reduced
computational
burden
by
strategically
reducing
from
11
4
while
maintaining
prediction
accuracy.
QNN
models
outperform
traditional
methods
like
artificial
networks
(ANN)
and
multilayer
perceptron
(MLPNN),
coefficient
determination
(R2)
value
0.987,
diminished
root
mean
square
error
(RMSE),
absolute
(MAE),
deviation
(MAD)
values
0.97,
0.92,
1.10,
respectively.
Predictions
for
six
newly
synthesized
derivatives:
quinoxaline-6-carboxylic
acid
(Q1),
methyl
quinoxaline-6-carboxylate
(Q2),
(2E,3E)-2,3-dihydrazono-1,2,3,4-tetrahydroquinoxaline
(Q3),
(2E,3E)
2,3-dihydrazono-6-methyl-1,2,3,4-tetrahydroquinoxaline
(Q4),
(E)-3-(4-methoxyethyl)-7-methylquinoxalin-2(1
H)-one
(Q5),
2-(4-methoxyphenyl)-7-methylthieno[3,2-b]
(Q6),
show
remarkable
CIE
95.12,
96.72,
91.02,
92.43,
89.58,
93.63
%,
This
breakthrough
technique
simplifies
testing
production
procedures
new
anti-corrosion
materials.
Applied Physics Reviews,
Journal Year:
2025,
Volume and Issue:
12(1)
Published: Jan. 6, 2025
Artificial
intelligence
(AI)
and
machine
learning
(ML)
have
attracted
the
interest
of
research
community
in
recent
years.
ML
has
found
applications
various
areas,
especially
where
relevant
data
that
could
be
used
for
algorithm
training
retraining
are
available.
In
this
review
article,
been
discussed
relation
to
its
corrosion
science,
monitoring
control.
tools
techniques,
structure
modeling
methods,
were
thoroughly
discussed.
Furthermore,
detailed
inhibitor
design/modeling
coupled
with
associated
limitations
future
perspectives
reported.