Unravelling the knowledge matrix: exploring knowledge-sharing behaviours on market-based platforms using regression tree analysis DOI
Yingnan Shi, Chao Ma

Personnel Review, Journal Year: 2024, Volume and Issue: unknown

Published: Nov. 9, 2024

Purpose This study aims to enhance the effectiveness of knowledge markets and overall management (KM) practices within organisations. By addressing challenge internal stickiness, it seeks demonstrate how machine learning AI approaches, specifically a text-based method for personality assessment regression trees behavioural analysis, can automate personalise market incentivisation mechanisms. Design/methodology/approach The research employs novel approach by integrating methodologies overcome limitations traditional statistical methods. A natural language processing (NLP)-based tool is used assess employees’ personalities, tree analysis applied predict categorise patterns in knowledge-sharing contexts. designed capture complex interplay between individual traits environmental factors, which methods often fail adequately address. Findings Cognitive style was confirmed as key predictor knowledge-sharing, with extrinsic motivators outweighing intrinsic ones market-based platforms. These findings underscore significance diverse combinations factors promoting sharing, offering insights that inform automatic design personalised interventions community managers such Originality/value stands out first empirically explore interaction environment shaping actual behaviours, using advanced methodologies. increased automation process extends practical contribution this study, enabling more efficient, automated process, thus making critical theoretical advancements understanding enhancing behaviours.

Language: Английский

The Knowledge-Based View of the Firm DOI
Susanne Durst, Yasmina Khadir

Synthesis lectures on technology, management, and entrepreneurship, Journal Year: 2025, Volume and Issue: unknown, P. 27 - 42

Published: Jan. 1, 2025

Language: Английский

Citations

0

A hybrid framework for creating artificial intelligence-augmented systematic literature reviews DOI Creative Commons

Fiza Saeed Malik,

Orestis Terzidis

Management Review Quarterly, Journal Year: 2025, Volume and Issue: unknown

Published: April 29, 2025

Abstract The integration of artificial intelligence (AI), particularly generative AI (GenAI) and large language models (LLMs), into systematic literature reviews (SLRs) represents a transformative advancement in research methodologies. This paper proposes hybrid framework combining AI’s computational power with the epistemological rigor human expertise, anchored transparency, validity, reliability, comprehensiveness, reflective agency. Through three interconnected phases—design, study collection, interpretation—the employs model selection, knowledge base curation, iterative prompt engineering to enhance scalability, uncover interdisciplinary connections, ensure methodological integrity through robust oversight. It addresses key SLR challenges, including handling vast datasets, ensuring reproducibility, maintaining epistemic while leveraging advanced capabilities. Key innovations include cyclical validation, inter-model comparisons, sensitivity testing trustworthiness mitigate biases. aligns processes ethical standards objectives by emphasizing domain-specific LLMs, reliability metrics, standardized reporting protocols. establishes SLRs as foundation for advancing complex, landscapes, harmonizing efficiency expertise.

Language: Английский

Citations

0

Искусственный интеллект для управления всеми человеческими данными DOI
Roman Lukyanenko

Published: April 28, 2025

В эпоху информационных технологий управление данными — основа остается трудоемким, неэффективным, в значительной степени недоступным, далеким от своего потенциала. Средства для значительного скачка вперед управлении уже здесь. Стремительное развитие искусственного интеллекта представляет собой возможность смены парадигмы цифровом хранении и данными. этой статье рассматривается, как системы агентного (искусственного интеллектa) ИИ могут революционизировать способы хранения, организации извлечения данных организациями людьми. Мы предлагаем управления всеми потребностями людей извлечении данных. Используя передовые возможности машинного обучения автономного принятия решений, на основе обещает превратить из неэффективного, требующего много времени процесса интеллектуальную персонализированную услугу, доступную каждому.

Language: Русский

Citations

0

Promoting or inhibiting: The impact of artificial intelligence application on corporate environmental performance DOI

Yeshen Liu,

Beibei Wang, Zhe Song

et al.

International Review of Financial Analysis, Journal Year: 2024, Volume and Issue: unknown, P. 103872 - 103872

Published: Dec. 1, 2024

Language: Английский

Citations

3

Exploring the scope of generative AI in literature review development DOI Creative Commons
Guido Schryen, Mauricio Marrone, Jiaqi Yang

et al.

Electronic Markets, Journal Year: 2025, Volume and Issue: 35(1)

Published: Feb. 5, 2025

Language: Английский

Citations

0

Generative Artificial Intelligence: Evolving Technology, Growing Societal Impact, and Opportunities for Information Systems Research DOI
Roman Lukyanenko

SSRN Electronic Journal, Journal Year: 2025, Volume and Issue: unknown

Published: Jan. 1, 2025

Language: Английский

Citations

0

Generative AI: Current Status and Future Directions DOI
Lai-Ying Leong, Teck-Soon Hew, Keng‐Boon Ooi

et al.

Journal of Computer Information Systems, Journal Year: 2025, Volume and Issue: unknown, P. 1 - 34

Published: April 1, 2025

Language: Английский

Citations

0

Copiloting the Future: How Generative AI Transforms Software Engineering DOI Creative Commons
Leonardo Banh,

Florian Holldack,

Gero Strobel

et al.

Information and Software Technology, Journal Year: 2025, Volume and Issue: unknown, P. 107751 - 107751

Published: April 1, 2025

Language: Английский

Citations

0

Next Data Paradigm: Using AI to Manage All Human Data — Foundations, Architecture, and Challenges in Using a Universal AI Data Manager DOI
Roman Lukyanenko

Published: April 10, 2025

In the age of smart IT, data management - very foundation information technology remains laborious, inefficient, largely inaccessible, falling far short its potential. The means taking a major leap forward in is here. rapid evolution artificial intelligence presents paradigm-shifting opportunity digital storage and management. This paper suggests how Agentic AI systems can revolutionize ways organizations people store, organize, retrieve data. We propose to manage all retrieval needs humans. By leveraging advanced machine learning, autonomous decision-making capabilities, AI-driven promises transform from an inefficient time-consuming process intelligent personalized service accessible everyone.

Language: Английский

Citations

0

Shifting Dynamics: How Generative AI as a Boundary Resource Reshapes Digital Platform Governance DOI Creative Commons
Anne‐Sophie Mayer, Angelos Kostis,

Franz Strich

et al.

Journal of Management Information Systems, Journal Year: 2025, Volume and Issue: unknown, P. 1 - 31

Published: May 5, 2025

Language: Английский

Citations

0