Random Forest Classifier Algorithm of Geographic Resources Analysis Support System Geographic Information System for Satellite Image Processing: Case Study of Bight of Sofala, Mozambique
Coasts,
Journal Year:
2024,
Volume and Issue:
4(1), P. 127 - 149
Published: Feb. 26, 2024
Mapping
coastal
regions
is
important
for
environmental
assessment
and
monitoring
spatio-temporal
changes.
Although
traditional
cartographic
methods
using
a
geographic
information
system
(GIS)
are
applicable
in
image
classification,
machine
learning
(ML)
present
more
advantageous
solutions
pattern-finding
tasks
such
as
the
automated
detection
of
landscape
patches
heterogeneous
landscapes.
This
study
aimed
to
discriminate
patterns
along
eastern
coasts
Mozambique
ML
modules
Geographic
Resources
Analysis
Support
System
(GRASS)
GIS.
The
random
forest
(RF)
algorithm
module
‘r.learn.train’
was
used
map
landscapes
shoreline
Bight
Sofala,
remote
sensing
(RS)
data
at
multiple
temporal
scales.
dataset
included
Landsat
8-9
OLI/TIRS
imagery
collected
dry
period
during
2015,
2018,
2023,
which
enabled
evaluation
dynamics.
supervised
classification
RS
rasters
supported
by
Scikit-Learn
package
Python
embedded
GRASS
Sofala
characterized
diverse
marine
ecosystems
dominated
swamp
wetlands
mangrove
forests
located
mixed
saline–fresh
waters
coast
Mozambique.
paper
demonstrates
advantages
areas.
integration
Earth
Observation
data,
processed
decision
tree
classifier
land
cover
characteristics
recent
changes
ecosystem
Mozambique,
East
Africa.
Language: Английский
Deep Learning Methods of Satellite Image Processing for Monitoring of Flood Dynamics in the Ganges Delta, Bangladesh
Water,
Journal Year:
2024,
Volume and Issue:
16(8), P. 1141 - 1141
Published: April 17, 2024
Mapping
spatial
data
is
essential
for
the
monitoring
of
flooded
areas,
prognosis
hazards
and
prevention
flood
risks.
The
Ganges
River
Delta,
Bangladesh,
world’s
largest
river
delta
prone
to
floods
that
impact
social–natural
systems
through
losses
lives
damage
infrastructure
landscapes.
Millions
people
living
in
this
region
are
vulnerable
repetitive
due
exposure,
high
susceptibility
low
resilience.
Cumulative
effects
monsoon
climate,
rainfall,
tropical
cyclones
hydrogeologic
setting
Delta
increase
probability
floods.
While
engineering
methods
mitigation
include
practical
solutions
(technical
construction
dams,
bridges
hydraulic
drains),
regulation
traffic
land
planning
support
systems,
geoinformation
rely
on
modelling
remote
sensing
(RS)
evaluate
dynamics
hazards.
Geoinformation
indispensable
mapping
catchments
areas
visualization
affected
regions
real-time
monitoring,
addition
implementing
developing
emergency
plans
vulnerability
assessment
warning
supported
by
RS
data.
In
regard,
study
used
monitor
southern
segment
Delta.
Multispectral
Landsat
8-9
OLI/TIRS
satellite
images
were
evaluated
(March)
post-flood
(November)
periods
analysis
extent
landscape
changes.
Deep
Learning
(DL)
algorithms
GRASS
GIS
modules
qualitative
quantitative
as
advanced
image
processing.
results
constitute
a
series
maps
based
classified
Language: Английский
Artificial Intelligence for Computational Remote Sensing: Quantifying Patterns of Land Cover Types around Cheetham Wetlands, Port Phillip Bay, Australia
Journal of Marine Science and Engineering,
Journal Year:
2024,
Volume and Issue:
12(8), P. 1279 - 1279
Published: July 29, 2024
This
paper
evaluates
the
potential
of
using
artificial
intelligence
(AI)
and
machine
learning
(ML)
approaches
for
classification
Landsat
satellite
imagery
environmental
coastal
mapping.
The
aim
is
to
identify
changes
in
patterns
land
cover
types
a
area
around
Cheetham
Wetlands,
Port
Phillip
Bay,
Australia.
scripting
approach
Geographic
Resources
Analysis
Support
System
(GRASS)
geographic
information
system
(GIS)
uses
AI-based
methods
image
analysis
accurately
discriminate
types.
Four
ML
algorithms
are
applied,
tested
compared
supervised
classification.
Technical
based
on
‘r.learn.train’
module,
which
employs
scikit-learn
library
Python.
methodology
includes
following
algorithms:
(1)
random
forest
(RF),
(2)
support
vector
(SVM),
(3)
an
ANN-based
multi-layer
perceptron
(MLP)
classifier,
(4)
decision
tree
classifier
(DTC).
AI
demonstrated
robust
results
classification,
with
highest
overall
accuracy
exceeding
98%
reached
by
SVM
RF
models.
presented
GRASS
GIS
detected
southern
Victoria
over
period
2013–2024.
From
our
findings,
use
offers
effective
solutions
monitoring
change
detection
multi-temporal
RS
data.
have
applications
wetland
monitoring,
urban
planning
Earth
observation
Language: Английский
Exploitation d'images satellitaires Landsat de la région du Cap (Afrique du Sud) pour le calcul et la cartographie d'indices de végétation à l'aide du logiciel GRASS GIS
Physio-Géo,
Journal Year:
2024,
Volume and Issue:
Volume 20, P. 113 - 129
Published: Jan. 1, 2024
Le
développement
de
techniques
programmation
et
langages
script
intégrés
aux
SIG
a
amélioré
le
traitement
des
images
satellitaires
pour
obtenir
informations
spatiales
à
partir
données
télédétection.
Dans
cet
article,
l'efficacité
l'intégration
multi-temporelles
d'observation
spatiale
avec
est
démontrée
travers
un
exemple
pris
en
Afrique
du
Sud.
Quatre
Landsat
couvrant
la
région
côtière
Cap
ont
été
acquises
auprès
l'USGS
les
années
2016,
2018,
2021
2023.
Leur
permis
calcul
quatre
indices
végétation
l'aide
module
'i.vi'
GRASS
:
DVI,
NDVI,
SAVI
CI.
Les
valeurs
cartographiées
chacune
traitées.
Ces
cartes
traduisent
changements
l'occupation
sol
depuis
notamment
déforestation
l'expansion
terres
agricoles.
MAPPING WOODLANDS IN ANGOLA, TROPICAL AFRICA: CALCULATION OF VEGETATION INDICES FROM REMOTE SENSING DATA
The Journal Agriculture and Forestry,
Journal Year:
2024,
Volume and Issue:
70(3)
Published: Sept. 30, 2024
This
paper
presents
the
application
of
scripting
algorithm
GRASS
GIS
for
calculation
and
visualization
vegetation
indices
using
satellite
data.The
data
include
images
Landsat-8
OLI/TIRS
covering
tropical
rainforests
central
Angola.The
were
acquired
in
July
2013
2023.The
methodology
is
based
on
module
'i.vi'
which
automatically
calculated
10
indices:
DVI,
NDVI,
ARVI,
EVI,
GEMI,
MSAVI2,
NDWI,
PVI,
GARI
IPVI.The
algorithms
processing
are
presented
scripts.The
results
extracted
information
distribution
bright
green
compared
with
other
land
cover
types:
forests
coastal
areas
distinguished
from
artificial
surfaces
urban
areas,
soils
shores.The
indicated
landscape
dynamics
Angola
decline
since
until
machine-based
workflow
increases
computational
efficiency
through
fast
use
scripts
demonstrated
that
programming
method
automated
extraction
effective
environmental
monitoring
African
landscapes
rainforests.
Language: Английский
Machine learning methods of satellite image analysis for mapping geologic landforms in Niger: A comparison of the Aïr mountains, Niger River basin and Djado Plateau
Podzemni radovi,
Journal Year:
2024,
Volume and Issue:
45, P. 27 - 47
Published: Jan. 1, 2024
This
study
analyses
geological
landforms
and
land
cover
types
of
Niger
using
spaceborne
data.
A
landlocked
African
country
rich
in
structures,
is
notable
for
contrasting
environmental
regions
which
were
examined
compared:
1)
lowlands
(Niger
River
basin);
2)
Aïr
Mountains;
3)
Djado
Plateau.
The
methodology
based
on
machine
learning
(ML)
models
programming
applied
Earth
observation
Spatio-temporal
analysis
was
performed
Landsat
8-9
OLI-TIRS
multispectral
images
classified
by
GRASS
GIS.
Data
processed
scripts
ML
algorithms
modules
r.random,
r.learn.train,
r.learn.predict,
i.cluster,
i.maxlik.
probabilistic
forecasting
included
support
vector
(SVM),
random
forest
(RF),
decision
tree
classifier
K
neighbors
classifier.
Variations
landscapes
caused
water
deficit
soil
erosion
analyzed,
parallels
between
geologic
setting
drawn.
intra-landscape
variability
patches
within
revealed
from
2014
to
2024.
Landscape
patterns
are
affected
drought
periods
central
Niger,
mountains,
distribution
crust
Karst
pits
sinkholes
Eastern
Niger.
Western
region
the
basin
shown
linked
hydrological
effects
erosion.
paper
shows
use
methods
geological-environmental
analysis.
Language: Английский
Approche cartographique par le SIG GRASS pour l'analyse de la structure du paysage au Libéria, Afrique de l'Ouest
Dynamiques environnementales,
Journal Year:
2024,
Volume and Issue:
53, P. 1 - 36
Published: Jan. 1, 2024
L'extraction
automatique
des
caractéristiques
du
paysage
est
de
plus
en
rendue
possible
grâce
à
l'utilisation
croissante
algorithmes
SIG
et
méthodes
avancées
d'analyse
données
géospatiales.
L'article
aborde
le
potentiel
GRASS
pour
l'analyse
la
géométrie
unités
travers
calcul
raster.
Les
ont
été
obtenues
se
basant
sur
images
satellites
classifiées
Libéria,
Afrique
l'Ouest,
entre
2014
2023.
La
dynamique
a
analysée
dans
les
changements
diachroniques
six
indices
indiquant
déforestation
au
Libéria
:
indice
densité
paysagères,
forme,
numéro
paysage,
écart
type,
coefficient
variation
plage
patch.
L'analyse
numérique
effectuée
techniquement
utilisant
script
par
modules
suivants
r.li.patchdensity,
r.li.shape,
r.li.patchnum,
r.li.padsd,
r.li.padcv
r.li.padrange.
A
l’échelle
parcellaire,
l’indice
forme
passé
2,86
4,09
2023,
ce
qui
indique
l’augmentation
somme
longueurs
bords
donc
une
fragmentation
accrue
parcellaire.
courbure
zone
paysagère
séparabilité
éléments
individuels
indiquent
également
processus
mais
forêts.
Cette
différentes
échelles
s’accompagne
d’une
baisse
notable
part
forêt
dense,
information
prouvée
valeurs
inférieures
patchs
2023
(1,15)
qu’en
(1,68).
En
global,
superficie
forestière
réduite
12
%
suggère
un
taux
annuel
moyen
0,9
Liberia.