Development and validation of a scale for dependence on artificial intelligence in university students
Frontiers in Education,
Journal Year:
2024,
Volume and Issue:
9
Published: March 12, 2024
Background
Artificial
Intelligence
(AI)
has
permeated
various
aspects
of
daily
life,
including
education,
specifically
within
higher
education
settings.
These
AI
technologies
have
transformed
pedagogy
and
learning,
enabling
a
more
personalized
approach.
However,
ethical
practical
concerns
also
emerged,
the
potential
decline
in
cognitive
skills
student
motivation
due
to
excessive
reliance
on
AI.
Objective
To
develop
validate
Scale
for
Dependence
(DIA).
Methods
An
Exploratory
Factor
Analysis
(EFA)
was
used
identify
underlying
structure
DIA
scale,
followed
by
Confirmatory
(CFA)
assess
confirm
this
structure.
In
addition,
scale’s
invariance
based
participants’
gender
evaluated.
Results
A
total
528
university
students
aged
between
18
37
years
(
M
=
20.31,
SD
3.8)
participated.
The
EFA
revealed
unifactorial
which
subsequently
confirmed
CFA.
Invariance
analyses
showed
that
scale
is
applicable
consistent
both
men
women.
Conclusion
DAI
emerges
as
robust
reliable
tool
measuring
students’
dependence
Its
makes
it
diverse
population
studies.
age
digitalization,
essential
understand
dynamics
humans
navigate
wisely
ensure
beneficial
coexistence.
Language: Английский
Explanatory model of behavioral adaptation in video game addiction among adolescents in urban and rural Peru: the mediating role of anxiety
Frontiers in Psychology,
Journal Year:
2025,
Volume and Issue:
16
Published: April 8, 2025
The
study
aimed
to
determine
the
relationships
between
behavioral
adaptation
and
video
game
addiction,
mediated
by
anxiety,
in
Peruvian
adolescents
from
urban
rural
areas,
using
a
structural
equation
modeling
(SEM)
approach.
This
explanatory
cross-sectional
employed
convenience
sampling,
comprising
606
students
of
both
sexes,
aged
11
13,
with
62.4%
areas
37.6%
areas.
instruments
used
included
State-Trait
Anxiety
Inventory
for
Children
(STAIC)
measure
state
trait
Behavioral
Adaptation
(IAC),
Video
Game
Dependency
Test
(TDV).
These
demonstrated
adequate
validity
reliability
sample
through
confirmatory
factor
analysis
(CFA),
ensuring
their
relevance
context.
SEM
results
confirmed
that
influences
good
model
fit
indices
(χ2/df
=
4.836;
TLI
0.945;
CFI
0.964;
GFI
0.950;
RMSEA
0.080,
90%
CI
[0.068,
0.092]).
Regarding
anxiety
types,
showed
stronger
negative
mediating
effect
(β
-0.31;
β
0.20)
compared
-0.22;
0.16).
Significant
differences
were
found
students,
exhibiting
lower
higher
levels
(p
<
0.001)
peers.
findings
support
theories
emphasizing
interaction
emotional
factors
development
problematic
behaviors.
Additionally,
is
identified
as
having
greater
impact
than
suggesting
situational
responses,
rather
stable
predispositions,
are
key
determinants
intensifying
addictive
behaviors
specific
contexts.
Language: Английский
Using Risk-Free Artificial Intelligence in the Classroom
Ankur Nandi,
No information about this author
Tapash Das,
No information about this author
Tarini Hader
No information about this author
et al.
Advances in educational technologies and instructional design book series,
Journal Year:
2024,
Volume and Issue:
unknown, P. 329 - 362
Published: Dec. 13, 2024
This
chapter
examines
professors'
perspectives
on
using
risk-free
artificial
intelligence
(AI)
in
higher
education
classrooms,
focusing
the
perceived
benefits,
challenges,
and
ethical
considerations
surrounding
AI
implementation.
Researchers
gathered
insights
into
experiences
viewpoints
integrating
educational
settings
through
a
qualitative
study
survey
method,
semi-structured
interviews,
questionnaires.
The
findings
reveal
that
while
offers
substantial
opportunities
for
enhancing
teaching
learning,
it
also
brings
notable
challenges
concerns.
Based
these
insights,
recommends
best
practices
to
ensure
responsible
effective
use
of
tools
education.
Language: Английский
YAPAY ZEKÂYA BAĞIMLILIK ÖLÇEĞİNİN TÜRKÇE’YE UYARLANMASI: GEÇERLİK VE GÜVENİRLİK ÇALIŞMASI
Herkes için Spor ve Rekreasyon Dergisi,
Journal Year:
2024,
Volume and Issue:
6(3), P. 306 - 315
Published: Aug. 28, 2024
Bu
çalışmada,
Morales-García
ve
ark.
(2024)
tarafından
geliştirilmiş
olan
Yapay
Zekâya
Bağımlılık
Ölçeğini
(Scale
for
Dependence
on
Artificial
Intelligence
-
DAI)
Türkçe
diline
uyarlayarak
güvenirlik
geçerliliğinin
incelenmesi
amaçlanmıştır.
Ölçek
üniversite
öğrencilerinin
zekâya
bağımlılık
düzeylerini
ölçmeyi
amaçlamaktadır.
Çalışma
dört
aşamada
gerçekleştirilmiştir.
Ölçeğin
Türkçe’ye
çevrilmesi,
açımlayıcı
doğrulayıcı
faktör
analizi,
madde
geçerliği,
güvenirlik.
kapsamında
584
katılımcının
oluşturduğu
öğrencilerinden
veri
toplanmıştır.
geçerliliğini
test
etmek
amacıyla
Açımlayıcı
Faktör
Analizi
Doğrulayıcı
yapılmıştır.
Analizinde
ölçeğin
tek
boyutlu
bir
yapıda
olduğu
varyansın
%
58,955’inin
açıklandığı
bulunmuştur.
Güvenirlik
için
Cronbach
Alfa
iç
tutarlılık
katsayısı
(.82)
test-
tekrar
değerleri
(0,79)
hesaplanmıştır.
Tek
boyut
5
maddeden
oluşan
Ölçeği
yapılan
analizinde;
x2/df=2.609
[χ2=13.045
(Sd=,
p