Higher-order interactions in functional brain networks in major depressive disorder DOI

A.D. Dolgov,

Semen Kurkin

Published: Sept. 18, 2023

Neuroscience explores the anatomy, function and development of central peripheral nervous system. Neuroscientists lately study functional brain networks to understand mental disorders like depression. Analysis these can aid in diagnosing Q-analysis, a higher-order interaction approach, may be more effective identifying regions relevant depression, compared standard paired approach. This examined networks, by using approach with Q-analysis method, depressed patients healthy subjects fMRI data. Results indicated fewer weaker interactions controls. Modularity clustering were also reduce These findings highlight importance studying for understanding

Language: Английский

Error-aware CNN improves automatic epileptic seizure detection DOI
Vadim Grubov, Sergei Nazarikov,

Nikita Utyashev

et al.

The European Physical Journal Special Topics, Journal Year: 2024, Volume and Issue: unknown

Published: Aug. 12, 2024

Language: Английский

Citations

1

Fmri study of changes in large-scale brain networks during affective touch DOI
Vladimir Khorev, Galina Portnova, А. Б. Кушнир

et al.

The European Physical Journal Special Topics, Journal Year: 2024, Volume and Issue: unknown

Published: Sept. 16, 2024

Language: Английский

Citations

1

Efficiency of convolutional neural networks of different architecture for the task of depression diagnosis from EEG data DOI Creative Commons
Natalia Shusharina

Izvestiya VUZ Applied Nonlinear Dynamics, Journal Year: 2024, Volume and Issue: unknown

Published: Jan. 1, 2024

The purpose of this paper is to comparatively analyse the efficiency using artificial neural networks with different convolutional and recurrent architectures in task depression diagnosis based on electroencephalogram (EEG) data. Open datasets were chosen as objects study own EEG data real patients collected. Methods. To solve problem identifying biomarkers depressive disorder from data, we used two-dimensional or one-dimensional convolution operation, well hybrid models networks. test developed networks, selected open sets, performed an experiment collect our depressed patients, merged prepared sets. result work analysis comparison performance classifiers network models. Conclusion. We show that average accuracy classification a sample cross-validation was 0.68. results are consistent known literature for small patient-disaggregated datasets. Although obtained insufficient practical application model, it can be argued further research improve model promising, need create sufficiently large representative dataset which important scientific construction biophysical disorders.

Language: Английский

Citations

0

Methodology of collection, recording and markup of biophysical multimodal data in the study of human psychoemotional states DOI Creative Commons
Natalia Shusharina

Izvestiya of Saratov University Physics, Journal Year: 2024, Volume and Issue: 24(3), P. 239 - 249

Published: Aug. 22, 2024

Аннотация.Цель настоящей работы -проанализировать требования к методике сбора биофизических данных на основе открытых наборов определения психоэмоционального состояния, аппаратному и программному обеспечению для их первичной обработки.Сформулировать методику формирования мультимодальных данных, пригодную исследования психических состояний изменений, в том числе с использованием алгоритмов машинного обучения.Описать возможный метод реализации этих требований аппаратно-программных комплексах.Методы.Для анализа основных особенностей характеризующих психические были выбраны открытые наборы пациентов депрессивными расстройствами.Основные сформулированы изучения публикаций об особенностях применения диагностики депрессивных расстройств.Результатом являются набор мультимодальным данным биопотенциалов психоэмоциональных состояний, методика функциональная концепция аппаратно-программного комплекса регистрации, синхронизации записи аннотированном виде.Заключение.На примере депрессивного расстройства показана целесообразность возможность регистрации мультимодальных, синхронизированных между собой аннотированных о психоэмоциональном состоянии испытуемого исследовательских, диагностических целей качестве обучающей выборки алгоритмах обучения.Предложенная программно-аппаратного позволяют

Language: Русский

Citations

0

Enhancements in artificial intelligence for medical examinations: A leap from ChatGPT 3.5 to ChatGPT 4.0 in the FRCS trauma & orthopaedics examination DOI
Akib Majed Khan, Khaled M Sarraf, Ashley I. Simpson

et al.

The Surgeon, Journal Year: 2024, Volume and Issue: unknown

Published: Nov. 1, 2024

Language: Английский

Citations

0

Recurrency time entropy of brain wave rhythms as an indicator of performance on visual search tasks in schoolchildren DOI
Artem Badarin,

Nikita Brusinskii,

Vadim Grubov

et al.

The European Physical Journal Special Topics, Journal Year: 2024, Volume and Issue: unknown

Published: Oct. 2, 2024

Language: Английский

Citations

0

Social roles of artificial intelligence. Part 2. Artificial intelligence systems in scientific research and medical practice DOI Creative Commons
Irina Aseeva

Proceedings of the Southwest State University Series Economics Sociology and Management, Journal Year: 2024, Volume and Issue: 14(5), P. 240 - 255

Published: Dec. 7, 2024

The relevance. rate of spread artificial systems with intelligence is increasing every year. This evidenced by a large number scientific publications, patents, research in this area and support for government programs. However, the ambiguity its use science practice leaves AI subject heated discussions both humanitarian community among scientists who technologies their professional activities. purpose article to analyze role professional, specifically, medical practice. Objectives: study digital elements used high-tech practices, potential risks; identify social roles that can be assigned programs as assistants scientists; show possibilities risks introducing into Methodology . As main approach solving tasks set, uses an interdisciplinary synthesis philosophical reflections, statistics results practical application healthcare, which allows highlighting anthropological problems rapid introduction new sphere. Results. examines healthcare environment all system processes, from diagnosis management complexes. possible AIS assistant manager, analyst, consultant qualified colleague modern technology-oriented are shown. Conclusions. When using work it pragmatic, psychological ethical aspects. Problems were found not only disclosure confidential information about patients, but also more serious shortcomings related effectiveness organization loss important competencies practitioners.

Language: Английский

Citations

0

Improving AI/ML services for ophthalmology and medicine DOI Creative Commons

Eric L. Buckland

Open Access Government, Journal Year: 2023, Volume and Issue: 39(1), P. 226 - 227

Published: July 10, 2023

Improving AI/ML services for ophthalmology and medicine Eric Buckland, PhD of Translational Imaging Innovations, delves into how we can achieve better transparency, traceability, reproducibility in medicine. Biomarkers are indispensable to finding cures developing new therapies degenerative eye diseases. objectively measurable characteristics or indicators normal biological processes, disease responses therapeutic interventions. essential decision-making throughout drug development patient care management. Dr. Buckland seeks explain biomarkers clinical endpoints transform ophthalmology, AI ML healthcare applications, biomarker relies on traceability & reproducibility. Overall, Innovations has committed “delivering the most convenient productive solutions ophthalmic discovery endpoint validation”. TII aims enable translational researchers develop diagnostics with more predictable benefits – faster, cheaper, less frustrating.

Language: Английский

Citations

0

Artificial intelligence and rehabilitation: what’s new and promising DOI Open Access
Ray Marks

International Physical Medicine & Rehabilitation Journal, Journal Year: 2023, Volume and Issue: 8(2), P. 135 - 140

Published: June 29, 2023

The development of artificially intelligent technological machine systems that can integrate large volumes data, and also ‘learn’ to recognize notable patterns, are currently being widely discussed employed in various health other realms. In this regard, what promise do these hold for ameliorating the late life chronic disease burden increasing numbers adults globally may stem from one or multiple longstanding conditions. To explore issue, a broad exploration rehabilitation associated artificial intelligence implications was conducted using leading data bases. Results show there some active advances both learning realms, but not context desirable robust observations all cases. Much future work is indicated though strongly recommended.

Language: Английский

Citations

0

Differences in the resting-state functional brain networks of patients with major depressive disorder and bipolar disorder DOI
Vladimir Khorev, Semen Kurkin, Rositsa Paunova

et al.

Published: Sept. 18, 2023

In this work, we analyzed the functional connectivity between different groups of subjects. The included patients with major depressive disorder, and bipolar depression that were obtained during experimental research. data had been subjected to preprocessing procedures employed in order identify brain regions displayed significant variations.

Language: Английский

Citations

0