Este
artigo
faz
uso
de
três
técnicas
aprendizagem
máquina
(Machine
Learnig
–
ML)
para
classificar
os
cinco
tipos
câncer
mais
recorrentes
em
mulheres,
a
partir
dados
expressão
gênica
RNA-Seq.
Os
desafios
incluem:
alta
dimensionalidade
do
conjunto
e
falta
transparência
dos
modelos
ML.
Para
mitigar
esses
problemas,
foi
utilizado
técnica
SHAP
(SHapley
Additive
exPlanations)
que
uma
inteligência
artificial
explicável
(Explainable
intelligence
XAI)
utilizada
compreender
como
tomam
decisões
podendo
ser
usada
estratégia
seleção
recursos.
Como
entrada,
foram
utilizadas
2.105
amostras,
sendo
421
amostras
referentes
cada
tumor,
processadas
pelos
Arvore
Decisão
(Decision
Tree-
DT),
Floresta
Aleatoria
(Random
Forest-RF)
Aumento
Gradiente
Extremo
(eXtreme
Gradient
Boosting-XGB)
treinadas
validadas
por
meio
da
validação
cruzada.
RF,
DT
XGB
alcançaram
precisões
99,
40%,
97,
60%
34%.
Posteriormente,
obter
lista
recursos
visando
quais
características
influenciaram
nas
tomadas
consequentemente,
nos
resultados
predição
tumores.
122,
90
11
genes
obtidos
DT,
totalizando
223
resultando
194
únicos.
Biochemical and Biophysical Research Communications,
Journal Year:
2024,
Volume and Issue:
733, P. 150604 - 150604
Published: Aug. 24, 2024
Hypoxia-inducible
factor
1
(HIF-1),
recognized
as
a
master
transcription
for
adaptation
to
hypoxia,
is
associated
with
malignant
characteristics
and
therapy
resistance
in
cancers.
It
has
become
clear
that
cofactors
such
ZBTB2
are
critical
the
full
activation
of
HIF-1;
however,
mechanisms
downregulating
ZBTB2-HIF-1
axis
remain
poorly
understood.
In
this
study,
we
identified
ZBTB7A
negative
regulator
by
analyzing
protein
sequences
structures.
We
found
forms
heterodimer
ZBTB2,
inhibits
homodimerization
necessary
expression
downstream
genes,
ultimately
delays
proliferation
cancer
cells
under
hypoxic
conditions.
The
Cancer
Genome
Atlas
(TCGA)
analyses
revealed
overall
survival
better
patients
high
their
tumor
tissues.
These
findings
highlight
potential
targeting
ZBTB7A-ZBTB2
interaction
novel
therapeutic
strategy
inhibit
HIF-1
activity
improve
treatment
outcomes
hypoxia-related
Developmental Dynamics,
Journal Year:
2023,
Volume and Issue:
252(9), P. 1189 - 1223
Published: June 22, 2023
Abstract
Background
Many
developmental
processes
are
coregulated
by
apoptosis
and
senescence.
However,
there
is
a
lack
of
data
on
the
development
branchial
arches,
epibranchial
placodes,
pharyngeal
pouches,
which
harbor
signaling
centers.
Results
Using
immunohistochemical,
histochemical,
3D
reconstruction
methods,
we
show
that
in
mice,
senescence
together
may
contribute
to
invagination
clefts
deepening
cervical
sinus
floor,
antagonism
proliferation
acting
evaginating
arches.
The
concomitant
apoptotic
elimination
lateral
line
rudiments
occurs
absence
In
appear
(1)
support
or
at
least
indentation
immobilizing
margins
centrally
proliferating
pit,
(2)
coregulate
number
fate
Pax8
+
precursors,
(3)
progressively
narrow
neuroblast
delamination
sites,
(4)
placode
regression.
Putative
centers
pouches
likely
deactivated
rostral
caudal
apoptosis.
Conclusions
Our
results
reveal
plethora
novel
patterns
senescence,
some
overlapping,
complementary,
whose
functional
contributions
region,
including
placodes
their
centers,
can
now
be
tested
experimentally.
Objectives:
Small
cell
lung
cancer
(SCLC)
shows
poor
prognosis
since
it
metastasizes
widely
at
early
stage.
PAX8
is
a
transcriptional
factor
that
belongs
to
Paired
box
gene
(PAX)
family.
Expression
of
in
controversial
issue.
The
prognostic
value
SCLC
still
unclear.Materials
and
Methods:
Overall,
122
subjects
who
were
pathologically
diagnosed
with
enrolled
the
study.
Immunohistochemical
analysis
Ki-67
performed.
correlations
between
expression
clinical
features
or
index
further
analyzed.
Subsequently,
an
association
PAX8,
stage,
status,
overall
survival
(OS)
was
performed
107
follow-up
information.Results:
positive
50%
(61/122)
specimens.
rate
significantly
higher
extensive-stage
specimens
(61.29%)
than
limited-stage
(38.33%).
level
positively
correlated
(P=0.012)
negatively
OS
(HR=5.255,
95%
CI
1.724-16.012,
P=0.004).
In
combination
groups,
negative
limited
stage
group
has
most
promising
which
no
death
during
period.Conclusion:
not
low.
It
small
cancer.
Este
artigo
faz
uso
de
três
técnicas
aprendizagem
máquina
(Machine
Learnig
–
ML)
para
classificar
os
cinco
tipos
câncer
mais
recorrentes
em
mulheres,
a
partir
dados
expressão
gênica
RNA-Seq.
Os
desafios
incluem:
alta
dimensionalidade
do
conjunto
e
falta
transparência
dos
modelos
ML.
Para
mitigar
esses
problemas,
foi
utilizado
técnica
SHAP
(SHapley
Additive
exPlanations)
que
uma
inteligência
artificial
explicável
(Explainable
intelligence
XAI)
utilizada
compreender
como
tomam
decisões
podendo
ser
usada
estratégia
seleção
recursos.
Como
entrada,
foram
utilizadas
2.105
amostras,
sendo
421
amostras
referentes
cada
tumor,
processadas
pelos
Arvore
Decisão
(Decision
Tree-
DT),
Floresta
Aleatoria
(Random
Forest-RF)
Aumento
Gradiente
Extremo
(eXtreme
Gradient
Boosting-XGB)
treinadas
validadas
por
meio
da
validação
cruzada.
RF,
DT
XGB
alcançaram
precisões
99,
40%,
97,
60%
34%.
Posteriormente,
obter
lista
recursos
visando
quais
características
influenciaram
nas
tomadas
consequentemente,
nos
resultados
predição
tumores.
122,
90
11
genes
obtidos
DT,
totalizando
223
resultando
194
únicos.