Integration of Artificial Intelligence and Robotics into the industrial sector
Vugar Abdullayev,
No information about this author
Ajesh Faizal,
No information about this author
Irada Seyidova
No information about this author
et al.
Data & Metadata,
Journal Year:
2025,
Volume and Issue:
4, P. 209 - 209
Published: Jan. 14, 2025
The
4th
industrial
revolution
is
driven
by
the
implementation
of
automated
robots
and
artificial
intelligence
(AI)
to
enhance
efficiency,
accuracy,
safety.
This
integration
encompasses
several
vital
domains
like
optimizing
supply
chain,
interaction
between
human
on
shop
floor,
predictive
maintenance,
automation
repetitive
tasks,
customisation,
behaviour
design,
safety
management,
data
analysis,
etc.
AI-enabled
perform
tasks
at
very
high
precision,
reducing
chances
error
allowing
workers
focus
more
complex
tasks.
Automated
upkeep
utilizes
AI
determine
time
machinery
will
likely
fail,
which
minimizes
downtime
maintenance
costs.
testing
AI-driven
vision
systems
support
quality
control
ensuring
a
balanced
product.
improves
chain
processes,
logistics
inventory
management.
Collaboration
humans
collaborative
robot’s
results
in
safer
productive
environments
with
people
working
alongside
each
other.
Artificial
Intelligence
plays
an
important
role
making
smarter
decisions,
analysing
effectively,
providing
valuable
information
that
can
be
used
improve
operations.
Manufacturing
customization
flexibility
are
reliant
adaptive
ability
manufacture
personalized
products
means
productivity.
Safe
Risk
Management
consolidated
because
work
dangerous
scenarios
models
assess
potential
dangers.
Despite
challenges
including
labour
displacement,
cybersecurity,
ethics,
stemming
from
this
technology,
these
all
potentially
available
your
terms.
article
reviews
broader
impacts
have
had
sector,
placing
emphasis
it
could
lead
towards
as
well
key
elements
consider
before
implementing
it.
Language: Английский
Yapay Zeka Uygulamalarının Mavi Yüzgeçli Orkinos (Thunnus Thynnus (Linnaeus, 1758))’un Avcılığı ve Yetiştiriciliği’nin Rolü
Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi,
Journal Year:
2025,
Volume and Issue:
11(1), P. 96 - 115
Published: March 28, 2025
Yapay
Zeka
(AI);
öğrenme,
problem
çözme
ve
karar
verme
gibi
tipik
olarak
insan
zekası
gerektiren
görevleri
yerine
getirebilen
bilgisayar
sistemlerinin
geliştirilmesi
uygulanması
anlamına
gelmektedir
son
yıllarda
birçok
sektörde
kullanımı
yaygınlaşmıştır.
zeka;
balık
yetiştiriciliğinde
büyümesi
sağlığının
anlaşılmasını
yönetimini
önemli
ölçüde
artırabilecek
gerçek
zamanlı
izleme,
veri
analitiği,
tahmine
dayalı
modelleme
destek
sistemleri
için
fırsatlar
sunmaktadır.
zekanın
orkinos
avcılığı
et
kalitesinin
belirlenmesinde
de
kullanılmaya
başlandığı
görülmektedir.
Ton
balığının
kalitesini
değerlendiren
bir
AI
sistemi
olan
TUNA
SCOPE,
Cermaq
Umitron
Corporation
şirketlerin
sağlığını
refahını
iyileştirmek
çeşitli
girişimlerde
bulundukları
AI'nın
su
ürünleri
yetiştiriciliğine
entegrasyonunun,
işgücü
maliyetlerini
çevresel
etkileri
azaltırken
verimliliği
artıran
odaklı
kararlara
olanak
tanıyarak
sürdürülebilir
uygulamalarda
devrim
yaratması
beklenmektedir.
Çalışmamızın
amacı;
yapay
zeka
kullanımı,
balıkçılık
yetiştiriciliğindeki
orkinoslarda
ile
ilgili
yapılmış
çalışmaların
detaylı
şekilde
incelenerek
sunmak
ileride
yapılacak
uygulamaları
alt
yapı
oluşturmaktır.
Review of state-of-the-art improvements in recirculating aquaculture systems: Insights into design, operation, and statistical modeling approaches
Aquaculture,
Journal Year:
2025,
Volume and Issue:
unknown, P. 742545 - 742545
Published: April 1, 2025
Language: Английский
Artificial intelligence in veterinary and animal science: applications, challenges, and future prospects
Computers and Electronics in Agriculture,
Journal Year:
2025,
Volume and Issue:
235, P. 110395 - 110395
Published: April 16, 2025
Language: Английский
Integrating AIoT Technologies in Aquaculture: A Systematic Review
Future Internet,
Journal Year:
2025,
Volume and Issue:
17(5), P. 199 - 199
Published: April 30, 2025
The
increasing
global
demand
for
seafood
underscores
the
necessity
sustainable
aquaculture
practices.
However,
several
challenges,
including
rising
operational
costs,
variable
environmental
conditions,
and
threat
of
disease
outbreaks,
impede
progress
in
this
field.
This
review
explores
transformative
role
Artificial
Intelligence
Things
(AIoT)
mitigating
these
challenges.
We
analyse
current
research
on
AIoT
applications
aquaculture,
with
a
strong
emphasis
use
IoT
sensors
real-time
data
collection
AI
algorithms
effective
analysis.
Our
focus
areas
include
monitoring
water
quality,
implementing
smart
feeding
strategies,
detecting
diseases,
analysing
fish
behaviour,
employing
automated
counting
techniques.
Nevertheless,
gaps
remain,
particularly
regarding
integration
broodstock
management,
development
multimodal
systems,
challenges
model
generalization.
Future
advancements
should
prioritise
adaptability,
cost-effectiveness,
sustainability
while
emphasizing
importance
advanced
biosensing
capabilities,
digital
twin
technologies.
In
conclusion,
presents
substantial
opportunities
enhancing
practices,
successful
implementation
will
depend
overcoming
related
to
scalability,
cost,
technical
expertise,
improving
models’
ensuring
sustainability.
Language: Английский