International Scientific Technical Journal Problems of Control and Informatics,
Journal Year:
2023,
Volume and Issue:
68(4), P. 96 - 104
Published: Aug. 10, 2023
Системи
на
основі
сучасних
інтелектуальних
технологій
сенсорного
та
супутникового
моніторингу
здатні
відстежувати
контролювати
віддалені
території
навколишнього
середовища
в
реальному
часі
сприяють
швидкому
реагуванню
його
зміни,
перш
ніж
це
стане
проблемою.
Вони
дозволяють
ефективніше
використовувати
наявні
ресурси,
оскільки
дані
можна
віддалено,
без
необхідності
фізичного
доступу.
Сучасні
супутникові
датчики
отримати
зображення
об’єктів
земної
поверхні
з
високою
роздільною
здатністю,
що
дозволяє
створювати
детальні
карти
Землі
робить
космічний
моніторинг
потужним
ефективним
інструментом
як
аналізу
кліматичних
змін,
екологічних
катастроф
глобального
впливу
людської
діяльності
стан
екосистем,
так
і
їхнього
попередження.
В
даній
роботі
досліджуються
визначаються
найбільш
інформативні
спектральні
канали
супутника
Sentinel-2
метою
подальшого
процесі
пошкоджених
лісів.
Сформовано
дослідницький
набір
даних
безхмарних
супутникових
знімків
(тестового
датасету
(набору
даних)
по
Франції)
у
вигляді
часового
ряду
для
дистанційного
лісових
ділянок
(до
після
пошкодження).
Отриманий
складається
5573
зображень.
На
прикладі
вегетаційного
індексу
NDVI
перевірена
гіпотеза
щодо
зменшення
середнього
значення
зростання
стандартного
відхилення
при
появі
певній
ділянці
хвойного
лісу
пошкодження
(захворювання
чи
засихання).
Отримані
результати
можуть
використовуватися
машинному
навчанні
алгоритмів
класифікації
Дослідження
проводилось
відповідно
до
наукових
цілей
європейського
проєкту
«Satellites
for
Wilderness
Inspection
and
Forest
Threat
Tracking»
(SWIFTT).
International Journal of Remote Sensing,
Journal Year:
2023,
Volume and Issue:
44(8), P. 2717 - 2753
Published: April 18, 2023
The
ever-increasing
global
population
presents
a
looming
threat
to
food
production.
To
meet
growing
demands
while
minimizing
negative
impacts
on
water
and
soil,
agricultural
practices
must
be
altered.
make
informed
decisions,
decision-makers
require
timely,
accurate,
efficient
crop
maps.
Remote
sensing-based
mapping
faces
numerous
challenges.
However,
recent
years
have
seen
substantial
advances
in
through
the
use
of
big
data,
multi-sensor
imagery,
democratization
remote
sensing
success
deep
learning
algorithms.
This
systematic
literature
review
provides
an
overview
history
evolution
using
techniques.
It
also
discusses
latest
scientific
field
mapping,
which
involve
machine
models.
protocol
involved
analysis
386
peer-reviewed
publications.
results
show
that
areas
such
as
rotation
double
cropping,
early
further
exploration.
LiDAR
tool
for
needs
more
attention,
hierarchical
is
recommended.
comprehensive
framework
future
researchers
interested
accurate
large-scale
from
multi-source
image
data
Remote Sensing,
Journal Year:
2023,
Volume and Issue:
15(13), P. 3414 - 3414
Published: July 5, 2023
Multitemporal
crop
classification
approaches
have
demonstrated
high
performance
within
a
given
season.
However,
cross-season
and
cross-region
presents
unique
transferability
challenge.
This
study
addresses
this
challenge
by
adopting
domain
generalization
approach,
e.g.,
training
models
on
multiple
seasons
to
improve
new,
unseen
target
years.
We
utilize
comprehensive
five-year
Sentinel-2
dataset
over
different
agricultural
regions
in
Slovakia
diverse
scheme
(eight
classes).
evaluate
the
of
machine
learning
algorithms,
including
random
forests,
support
vector
machines,
quadratic
discriminant
analysis,
neural
networks.
Our
main
findings
reveal
that
across
years
differs
between
regions,
with
Danubian
lowlands
demonstrating
better
(overall
accuracies
ranging
from
91.5%
2022
94.3%
2020)
compared
eastern
85%
91.9%
2020).
Quadratic
networks
consistently
scenarios.
The
forest
algorithm
was
less
reliable
generalizing
scenarios,
particularly
when
there
significant
deviation
distribution
domains.
finding
underscores
importance
employing
multi-classifier
analysis.
Rapeseed,
grasslands,
sugar
beet
show
stable
seasons.
observe
all
periods
play
crucial
role
process,
July
being
most
important
August
least
important.
Acceptable
can
be
achieved
as
early
June,
only
slight
improvements
towards
end
Finally,
approach
allows
for
parcel-level
confidence
determination,
enhancing
reliability
maps
assuming
higher
classifiers
yield
similar
results.
To
enhance
spatiotemporal
generalization,
our
proposes
two-step
approach:
(1)
determine
optimal
spatial
accurately
represent
type
distribution;
(2)
apply
interannual
capture
variability
helps
account
various
factors,
such
rotation
practices,
observational
quality,
local
climate-driven
patterns,
leading
more
accurate
nationwide
monitoring.
Remote Sensing,
Journal Year:
2023,
Volume and Issue:
15(10), P. 2504 - 2504
Published: May 10, 2023
Mosaic
of
apple
leaves
is
a
major
disease
that
reduces
the
yield
and
quality
apples,
monitoring
for
allows
its
timely
control.
However,
few
studies
have
investigated
status
pests
diseases,
especially
mosaic
using
hyperspectral
imaging
technology.
Here,
images
healthy
infected
were
obtained
near-ground
high
spectrometer
anthocyanin
content
was
measured
simultaneously.
The
spectral
differences
between
analyzed.
in
estimated
by
optimal
model
to
determine
degree
disease.
exhibited
stronger
reflectance
at
range
500–560
nm
as
increased.
correlation
processed
Gaussian1
wavelet
transform
significantly
improved
compared
corresponding
results
with
original
spectrum.
VPs-XGBoost
estimation
performed
best,
which
sufficient
monitor
findings
provide
theoretical
support
quantitative
leaf
remote
sensing
disease;
they
lay
foundation
large-scale
sensing.
Forests,
Journal Year:
2023,
Volume and Issue:
14(9), P. 1864 - 1864
Published: Sept. 13, 2023
An
accurate
and
efficient
estimation
of
eucalyptus
plantation
areas
is
paramount
significance
for
forestry
resource
management
ecological
environment
monitoring.
Currently,
combining
multidimensional
optical
SAR
images
with
machine
learning
has
become
an
important
method
classification,
but
there
are
still
some
challenges
in
feature
selection.
This
study
proposes
a
selection
that
combines
multi-temporal
Sentinel-1
Sentinel-2
data
SLPSO
(social
particle
swarm
optimization)
RFE
(Recursive
Feature
Elimination),
which
reduces
the
impact
information
redundancy
improves
classification
accuracy.
Specifically,
this
paper
first
fuses
data,
then
carries
out
by
to
mitigate
effects
redundancy.
Next,
based
on
features
such
as
spectrum,
red-edge
indices,
texture
characteristics,
vegetation
backscatter
coefficients,
employs
Simple
Non-Iterative
Clustering
(SNIC)
object-oriented
three
different
types
machine-learning
models:
Random
Forest
(RF),
Classification
Regression
Trees
(CART),
Support
Vector
Machines
(SVM)
extraction
areas.
Each
model
uses
supervised-learning
method,
labeled
training
guiding
regions.
Lastly,
validate
efficacy
selecting
performance
SLPSO–RFE
comparative
analysis
undertaken
against
results
derived
from
single-temporal
ReliefF–RFE
scheme.
The
findings
reveal
employing
significantly
elevates
precision
plantations
across
all
classifiers.
overall
accuracy
rates
were
noted
at
95.48%
SVM,
96%
CART,
97.97%
RF.
When
contrasted
outcomes
ReliefF–RFE,
trio
models
saw
increase
10%,
8%,
8.54%,
respectively.
enhancement
was
even
more
pronounced
when
juxtaposed
ReliefF-RFE,
increments
15.25%,
13.58%,
14.54%
insights
research
carry
profound
theoretical
implications
practical
applications,
particularly
identifying
extracting
leveraging
Agriculture,
Journal Year:
2023,
Volume and Issue:
13(8), P. 1633 - 1633
Published: Aug. 19, 2023
This
study
developed
a
multi-year
classification
model
for
winter
cereal
in
semi-arid
region,
the
Kairouan
area
(Tunisia).
A
random
forest
was
constructed
using
Sentinel
2
(S2)
vegetation
indices
reference
agricultural
season,
2020/2021.
then
applied
S2
and
Landsat
(7
8)
data
previous
seasons
from
2011
to
2022
validated
field
observation
data.
The
achieved
an
overall
accuracy
(OA)
of
89.3%.
Using
resulted
higher
accuracy.
Cereal
exhibited
excellent
precision
ranging
85.8%
95.1%
when
utilizing
data,
while
lower
(41%
91.8%)
obtained
only
slight
confusion
between
cereals
growing
with
olive
trees
observed.
second
objective
map
as
early
possible
season.
An
demonstrated
accurate
results
February
(four
months
before
harvest),
95.2%
OA
87.7%.
When
entire
period,
85.1%
94.2%
(42.6%
95.4%)
observed
general
methodology
could
be
adopted
other
regions
similar
climates
produce
very
useful
information
planner,
leading
reduction
fieldwork.
Geocarto International,
Journal Year:
2024,
Volume and Issue:
39(1)
Published: Jan. 1, 2024
Monitoring
Hani
terraces
quickly
and
accurately
using
remote
sensing
technology
is
crucial
for
the
protecting
World
Cultural
Heritage
Sites.
However,
single
image
affected
by
mutual
constraints
of
temporal
spatial
resolution,
making
it
difficult
to
concurrently
integrate
key
phenological
information
accurate
extraction.
In
this
study,
GF-2
Sentinel-2
images
are
used
extract
based
on
objected-based
analysis.
Firstly,
features
objects
were
obtained
multi-resolution
segmentation
image.
Secondly,
optimal
optimized
recursive
feature
elimination
cross-validation
separation
index,
respectively.
Finally,
all
adopted
random
forest
(RF)
support
vector
machine
(SVM)
classifiers,
Comparing
deep
learning
traditional
methods,
proposed
method
RF
achieved
highest
accuracy
with
Kappa
coefficient
overall
89.45
94.73%,
Remote Sensing,
Journal Year:
2024,
Volume and Issue:
16(24), P. 4706 - 4706
Published: Dec. 17, 2024
Remote
sensing
data
have
been
widely
used
to
monitor
various
agricultural
activities,
such
as
crop
distribution
mapping,
phenology
extraction,
farmland
soil
moisture
monitoring,
diseases
prevention,
and
ideotype
breeding
[...]
International Journal of Environment and Climate Change,
Journal Year:
2023,
Volume and Issue:
13(10), P. 968 - 980
Published: Aug. 23, 2023
For
the
assessment
of
crop
diversification
in
major
tank
Ayacut
area
Lower
Palar
sub-basin
Chengalpattu
district
Tamil
Nadu,
research
works
were
carried
out
using
Sentinel
2
optical
data
by
relating
with
ground
truth
data,
to
identify
crops
pixel-based
classification
and
further
classified
Random
Forest
machine
learning
algorithms.
The
total
estimated
under
was
15767.97
28818.17
ha
respectively
for
summer
seasons
2018
2021.
Since,
season
experiences
high
diversification.
water
spread
volume
tanks
612.31
1177.89
6,39,248
14,06,056
m3
accuracy
points
confusion
matrix
reveals
an
overall
96.8%
(2018)
94.9
%
(2021)
kappa
scores
0.96
0.94
respectively.
assessments
Simpson
Index
Diversity
values
0.63
0.68
accounted
2021
diversified
pattern
is
significantly
correlated
availability
which
increased
cropping
as
confirmed
Crop
Diversification
factor.