Published: Jan. 1, 2024
Language: Английский
Published: Jan. 1, 2024
Language: Английский
Remote Sensing, Journal Year: 2025, Volume and Issue: 17(2), P. 267 - 267
Published: Jan. 13, 2025
Nitrogen and phosphorus are limiting nutrients in freshwater ecosystems, the remote estimation of total (TP) nitrogen (TN) eutrophic waters is great significance. This study utilized machine learning algorithms based on Sentinel-2 satellite imagery for TP TN concentrations Lake Xingkai, Chagan Songhua. Results indicate that random forest (RF) XGBoost regression perform better. The performance GBDT algorithm was slightly lower than RF algorithms, BP had overfitting, SVR poor fitting performance. showed concentration inversion model highest accuracy (R2 = 0.98, RMSE 0.09, MAPE 19.74%). Extreme Gradient Boosting (XGB) also performed well, though less accurately 0.97, 0.14, 20.67%). For concentration, XGB model’s 0.82, 0.08, 24.89%) comparable to 0.07, 29.55%). applied all cloud-free images these typical lakes northeastern China during non-glacial period from 2017 2023, generating spatiotemporal distribution maps concentrations. Between Songhua increasing, decreasing, initially decreasing then increasing patterns, respectively. A positive correlation between temperature observed, as higher temperatures enhance biological activity. In contrast, a negative found with promote phytoplankton growth reproduction. not only offers new method monitoring eutrophication but provides valuable support sustainable water resource management ecological protection goals.
Language: Английский
Citations
0Journal of Environmental Management, Journal Year: 2025, Volume and Issue: 377, P. 124636 - 124636
Published: Feb. 26, 2025
Language: Английский
Citations
0Ecological Informatics, Journal Year: 2025, Volume and Issue: 89, P. 103171 - 103171
Published: April 28, 2025
Language: Английский
Citations
0Published: April 22, 2024
Abstract. In recent years citizen science emerged as a promising technology in environmental and hydrology with the potential to overcome lack of in-situ measurements create efficient ecosystems. This paper provides an up-to-date systematic literature review applications water quality monitoring estimation. A bridge between remote sensing will be established provide sound framework for comprehensively discussing various approaches applications. scrutinizing parameters associated measurement estimation methods is provided, delving into systems (microwave optical systems) imaging techniques (hyperspectral hyperspectral methods). special interest focused on reviewing existing relevant crowd-sourcing mobile apps such EyeOnWater, HydroColor, EnviObserver, Sechhi App, Hydro Crowd, SIMILE-Lake monitoring, detailing their working mechanisms, algorithms, data acquisition processes, used sensors, measured parameters. Finally, summarizes key knowledge gaps, challenges directions this research field.
Language: Английский
Citations
1Drones, Journal Year: 2024, Volume and Issue: 8(12), P. 733 - 733
Published: Dec. 3, 2024
Monitoring water quality is crucial for understanding aquatic ecosystem health and changes in physical, chemical, microbial standards. Water critically influences industrial, agricultural, domestic uses of water. Remote sensing techniques can monitor measure parameters accurately quantitatively. Earth observation satellites equipped with optical thermal sensors have proven effective providing the temporal spatial data required monitoring inland bodies. However, using satellite-derived are associated coarse resolution thus unsuitable small With development unmanned aerial vehicles (UAVs) artificial intelligence, there has been significant advancement remotely sensed retrieval bodies, which provides crop irrigation. This article presents application from UAVs to retrieve key such as surface temperature, total suspended solids (TSS), Chromophoric dissolved organic matter (CDOM) In particular, review comprehensively analyses potential advancements utilising drone technology along machine learning algorithms, platform type, sensor characteristics, statistical metrics, validation these parameters. The study discusses strengths, challenges, limitations estimating TSS, CDOM Finally, possible solutions remarks retrieving provided. important future research agricultural production
Language: Английский
Citations
1Published: April 19, 2024
In recent years citizen science emerged as apromising technology in environmental and hy-drology with the potential to overcome lack of in-situ measurements create efficient ecosystems. Thispaper provides an up-to-date systematic literature reviewof applications water qual-ity monitoring estimation. A bridge between citizenscience remote sensing will be established providea sound framework for comprehensively discussing thevarious approaches applications. scrutinizing var-ious quality parameters associated measurement& estimation methods is provided, delving into variousremote systems (microwave optical systems)and imaging techniques (hyperspectral hyperspectralmethods). special interest focused on reviewing existingrelevant crowd-sourcing mobile apps such EyeOnWater,HydroColor, EnviObserver, Sechhi App, Hydro Crowd,and SIMILE-Lake monitoring, detailing their workingmechanisms, algorithms, data acquisition processes, usedsensors, measured parameters. Finally,the paper summarizes key knowledge gaps, challenges andpromising directions this research field.
Language: Английский
Citations
0Published: April 22, 2024
Abstract. In recent years citizen science emerged as a promising technology in environmental and hydrology with the potential to overcome lack of in-situ measurements create efficient ecosystems. This paper provides an up-to-date systematic literature review applications water quality monitoring estimation. A bridge between remote sensing will be established provide sound framework for comprehensively discussing various approaches applications. scrutinizing parameters associated measurement estimation methods is provided, delving into systems (microwave optical systems) imaging techniques (hyperspectral hyperspectral methods). special interest focused on reviewing existing relevant crowd-sourcing mobile apps such EyeOnWater, HydroColor, EnviObserver, Sechhi App, Hydro Crowd, SIMILE-Lake monitoring, detailing their working mechanisms, algorithms, data acquisition processes, used sensors, measured parameters. Finally, summarizes key knowledge gaps, challenges directions this research field.
Language: Английский
Citations
0Tihookeanskaia geografiia, Journal Year: 2024, Volume and Issue: 2(18), P. 107 - 119
Published: June 28, 2024
Охарактеризована изменчивость химического состава рек Спасовка и Комиссаровка, впадающих в оз. Ханка дренирующих водосборы с различным уровнем хозяйственной освоенности. Бассейн р. Комиссаровка имеет площадь 2 раза больше, чем Спасовка, но меньшую степень антропогенной нагрузки. Преобладающей категорией земель двух бассейнах являются лесные территории, однако доля сельскохозяйственных бассейне 3 больше (28 % от общей площади), (9.4 %). включает, кроме того, территорию г. Спасск-Дальний крупными предприятиями стройиндустрии. В 2019–2021 гг. реки имели низкую минерализацию, гидрокарбонатно-натриевый состав нейтральную или слабощелочную величину рН. Концентрации макроионов биогенных веществ воде соответствовали фоновым значениям. химический воды существенно изменялся верховьев к низовью. Установлено, что результате загрязнения окружающей среды на территории близлежащих сельхозпредприятий ее притоке Кулешовка 2–3 увеличивается содержание Ca2+, HCO3-, SO42-, Cl-, Mg2+ Na+, а также возрастают концентрации фосфатов, ионов аммония нитритов. 2020–2021 выявлены превышения ПДК для рыбохозяйственных водоемов по NH4+ 1.2 – раза, NO2- 3.5 12 раз. Влияние бытового, промышленного сельскохозяйственного биоту водотоков выражается локальной деградации сообществ макробентоса. устьевых зонах не превышали санитарных норм. Для это обусловлено процессами самоочищения нижнем течении за счет дренирования государственного природного биосферного заповедника «Ханкайский». Chemical composition of the Spasovka River and Komissarovka River, which flow into Lake Khanka have catchment areas with different levels economic development, has been studied. The area basin is times larger than but anthropogenic transformation lesser for first one. Forests are predominant category lands in both river basins, share cultivated land higher (28%) (9.4%). city Spassk-Dalniy large construction industry enterprises located basin. In 2019-2021 rivers had low mineralization, a hydrocarbonate-sodium composition, neutral or slightly alkaline pH. concentrations macroions nutrients (N, P, C) water corresponded to background levels. basin, chemical changed significantly from upper lower reaches. It was determined that environmental pollution nearby agricultural leads an increase Ca 2+, Na+ concentration its tributary Kuleshovka by 2-3 times, as well high level phosphates, ammonium ions nitrites. 2020-2021 MPCs fishery reservoirs were exceeded 1.2-2 ammonium, 3.5-12 entry pollutants industrial, municipal sources local degradation macrobenthos communities. estuary zones substances waters did not exceed sanitary standards, since self-purification occurs reaches drains territory Khankaiskiy State Natural Biosphere Reserve.
Language: Русский
Citations
0Published: July 15, 2024
Language: Английский
Citations
0Published: Jan. 1, 2024
Language: Английский
Citations
0