Visual Sentinel: Data Analytics for Missing Subject Identification DOI

Franz Cardoz,

Loorthu Infenda,

Daffril Cleetus

et al.

Published: Dec. 14, 2023

The goal of the "Visual Sentinel: Video Analytics for Missing Subject Identification" project is to automate process identifying missing subjects from CCTV video by utilizing cutting-edge machine learning and computer vision techniques. One project's goals create a real-time surveillance system that integrates face recognition technology increased precision accuracy. has ability save lives bring families back together speeding up search recovery procedure. To effectively locate subjects, uses de-blurring methods algorithms. matches people in against specified data collection, giving authorities access timely information, according key results. sum up, Visual Sentinel provides strong practical solution enables security law enforcement professionals.

Language: Английский

Road traffic can be predicted by machine learning equally effectively as by complex microscopic model DOI Creative Commons
Andrzej Sroczyński, Andrzej Czyżewski

Scientific Reports, Journal Year: 2023, Volume and Issue: 13(1)

Published: Sept. 4, 2023

Abstract Since high-quality real data acquired from selected road sections are not always available, a traffic control solution can use software simulators working offline. The results show that in contrast to microscopic simulation, the algorithms employing neural networks work real-time, so they be used, among others, determine speed displayed on variable message signs. This paper describes an experiment develop and test machine learning models, i.e., long short-term memory, gated recurrent unit networks, stacked autoencoder networks. It compares their effectiveness with prediction generated using widely recognized simulator analyzes at level of individual vehicles.

Language: Английский

Citations

15

An effective IoT interface considering an eye-tracking method for autonomous vehicle DOI

Junghoon Park

Internet of Things, Journal Year: 2025, Volume and Issue: unknown, P. 101583 - 101583

Published: March 1, 2025

Language: Английский

Citations

0

Boost-Fmh: A Multi-Objective Algorithm Based on Boost Weighted Fusion Strategy DOI

Yuchen Li,

L. Sun,

Haohan Xu

et al.

Published: Jan. 1, 2025

Language: Английский

Citations

0

A digital twin-based motion forecasting framework for preemptive risk monitoring DOI
Yujun Jiao,

Xukai Zhai,

Luyajing Peng

et al.

Advanced Engineering Informatics, Journal Year: 2023, Volume and Issue: 59, P. 102250 - 102250

Published: Nov. 14, 2023

Language: Английский

Citations

9

Multi-level traffic-responsive tilt camera surveillance through predictive correlated online learning DOI
Tao Li, Zilin Bian,

Haozhe Lei

et al.

Transportation Research Part C Emerging Technologies, Journal Year: 2024, Volume and Issue: 167, P. 104804 - 104804

Published: Aug. 14, 2024

Language: Английский

Citations

1

Internet-of-Things Edge Computing Systems for Streaming Video Analytics: Trails Behind and the Paths Ahead DOI Creative Commons

Arun Ravindran

IoT, Journal Year: 2023, Volume and Issue: 4(4), P. 486 - 513

Published: Oct. 24, 2023

The falling cost of IoT cameras, the advancement AI-based computer vision algorithms, and powerful hardware accelerators for deep learning have enabled widespread deployment surveillance cameras with ability to automatically analyze streaming video feeds detect events interest. While analytics is currently largely performed in cloud, edge computing has emerged as a pivotal component due its advantages low latency, reduced bandwidth, enhanced privacy. However, distinct gap persists between state-of-the-art algorithms successful practical implementation edge-based systems. This paper presents comprehensive review more than 30 research papers published over last 6 years on (IE-SVA) are analyzed across 17 dimensions. Unlike prior reviews, we examine each system holistically, identifying their strengths weaknesses diverse implementations. Our findings suggest that certain critical topics necessary realization IE-SVA systems not sufficiently addressed current research. Based these observations, propose trajectories short-, medium-, long-term horizons. Additionally, explore trending other areas can significantly impact evolution

Language: Английский

Citations

2

Machine Learning-Based Solution For Automatic Border Surveillance System DOI
Khalifa M. Bellazi

Published: June 21, 2024

Developing and designing border surveillance systems to meet specific needs requirements is a comprehensive process that involves careful assessment, customization, consideration of environmental operational factors. These are crucial for most nations worldwide, as they can provide real-time monitoring vast areas, including remote challenging terrains, which might pose challenge systems. Covering extensive areas with difficult terrains presents significant challenges due power limitations high costs. To address the faced by current systems, such limitations, alternative energy sources energy-efficient technologies proposed. Additionally, cost management achieved through selection equipment modular designs. This enables terrestrial environments operate effectively in large, remote, terrains. The thesis's contribution field focuses specifically on Libyan Desert border. It highlights unique approach research its relevance addressing geographical context. system utilizes unmanned fixed platforms equipped infrared cameras (FLIR) employs edge computing Internet Things (IoT) framework. Within this framework, two Automatic Target Recognition (ATR) based machine learning algorithms, Bag-of-Features feature extraction supervised classification, implemented. run low-power microprocessors capacity IoT nodes. first proposed segments image into regions interest before processing, while second ATR works directly entire image. evaluate performance these dataset images relevant Sahara environment used, allowing testing assessment system's capabilities. In evaluation process, both approaches considered combination four different classification algorithms: Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree (DT), Naive Bayes (NB), along three descriptors: SURF, SIFT, ORB. As conclusion experimental use generic classes recommended low resolution images. SURF-SVM prediction highest detection capacity, reaching up 97\%, frame rates 5.71 device 59.17 workstation. approach, focusing classifying categories (animal, vehicle, person), resulted reduced confusion between compared identifying targets. By employing categories, an increase capacity. results demonstrate feasibility using surveillance, even like Desert. RESUMEN Desarrollar y diseñar sistemas de vigilancia fronteriza para cumplir con necesidades requisitos específicos es un proceso integral que implica una evaluación cuidadosa, personalización consideración factores ambientales operativos. Estos son importantes la mayoría las naciones en todo el mundo, ya pueden proporcionar monitoreo tiempo real grandes áreas, incluyendo terrenos remotos difíciles, podrían ser desafío los vigilancia. Cubrir áreas difíciles plantea desafíos significativos debido limitaciones energía altos costos. Para abordar enfrentados por actuales fronteriza, como energía, se proponen fuentes alternativas tecnologías eficientes además gestionar costos mediante selección cuidadosa equipos diseños modulares. Esto permite entornos terrestres operen manera efectiva grandes, difíciles. La contribución tesis al campo centra específicamente frontera del Desierto Libio. Destaca enfoque único investigación su relevancia contexto geográfico ambiental específico. El sistema utiliza plataformas fijas no tripuladas equipadas cámaras infrarrojos emplea computación borde Cosas. Dentro este marco, implementan dos Reconocimiento Automático Objetivos basados algoritmos aprendizaje automático, extracción características uso clasificación supervisada. ejecutan microprocesadores baja potencia capacidad cómputo nodos primer propuesto segmenta imagen regiones interés antes procesamiento, mientras segundo trabaja directamente completa. evaluar rendimiento estos conjunto datos imágenes relevante entorno Sáhara, permitiendo pruebas exhaustivas capacidades sistemas. llevar cabo evaluación, consideraron ambas aproximaciones combinación cuatro diferentes, Máquina Soporte Vectorial Vecinos Más Cercanos Árbol Decisiones (DT) tres descriptores, SIFT Como conclusión experimental, recomienda utilizar clases genéricas resolución infrarrojos. Además, predicción basado logró mayor detección, alcanzando hasta dispositivo Cosas estación trabajo. Este enfoque, clasificar categorías vehículo persona), resultó disminución confusión entre comparación identificación objetivos específicos. Al emplear genéricas, aumento detección. resultados muestran viabilidad incluso desafiantes Sáhara.

Citations

0

Revolutionizing Car Assembly Line Efficiency Using Multi-Object Detection and Tracking DOI

Abhishikt Edward Peters,

Sujitha Juliet,

J. Anitha

et al.

Published: May 3, 2024

Language: Английский

Citations

0

Digital Twin-Assisted Graph Matching Multi-Task Object Detection Method in Complex Traffic Scenarios DOI Creative Commons
Li Mi,

Chuhui Liu,

Xueming Pan

et al.

Research Square (Research Square), Journal Year: 2024, Volume and Issue: unknown

Published: Oct. 25, 2024

Abstract Addressing the challenges of time-consuming and labor-intensive traffic data collection annotation, along with limitations current deep learning models in practical applications, this paper proposes a cross-domain object detection transfer method based on digital twins. A twin scenario is constructed using simulation platform, generating virtual dataset. To address distributional discrepancies between real datasets, multi-task algorithm graph matching introduced. The employs module to align feature distributions source target domains, followed by network for detection. An attention mechanism then applied instance segmentation, two tasks exhibiting different noise patterns that mutually enhance robustness learned representations. Additionally, multi-level discriminator designed, leveraging both low- high-level features adversarial training, thus enabling share useful information, which improves performance proposed tasks.

Language: Английский

Citations

0

Enhancing Object Tracking in Smart City Intelligent Transportation Systems: A Track-by-Detection Approach Utilizing Satellite Video Monitoring DOI
Mahmoud Ahmed, Naser El‐Sheimy, Henry Leung

et al.

Published: Sept. 16, 2024

Language: Английский

Citations

0