Estimating Stand Carrying Capacity for Three Common Pine Species Across Various Regions of Türkiye
Forests,
Journal Year:
2025,
Volume and Issue:
16(2), P. 374 - 374
Published: Feb. 19, 2025
Sustainable
management
of
forest
ecosystems
requires
assessing
dynamics
and
project
stand
growth
yield
in
order
to
make
strategic
decisions.
The
size–density
relationship
is
one
the
most
important
measures
quantifying
carrying
capacity
a
ecosystem
determining
appropriate
silvicultural
In
this
study,
maximum
density
index
(SDImax)
was
estimated
for
three
common
pine
species
seven
different
ecological
regions
across
Türkiye.
Observations
from
14,413
sample
plots,
including
Calabrian
(Pinus
brutia
Ten.;
6266
plots
five
regions),
Black
nigra
J.F.
Arnold;
6106
regions)
Scots
sylvestris
L.;
2041
forests
were
used
covering
entire
natural
range
these
species.
A
mixed
model
with
region
as
random
effect
developed
each
estimate
SDImax.
Results
show
that
slope
coefficients
self-thinning
lines
vary
by
are
significantly
−1.605.
stands
exhibited
highest
SDImax,
followed
stands.
Across
regions,
SDImax
observed
Aegean
East
Anatolia
pine.
arid
Inner
yielded
lowest
humid
semi-humid
showed
higher
compared
regions.
studied
up
almost
half
total
area
results
study
therefore
very
terms
quantitative
assessment
country’s
forests.
differences
species,
which
also
widely
distributed
outside
Türkiye
under
conditions,
may
be
relevant
source
information
other
Moreover,
considering
dry
environments
have
lower
than
those
it
seems
likely
will
affected
increasing
global
warming.
Language: Английский
Analyzing regression models and multi-layer artificial neural network models for estimating taper and tree volume in Crimean pine forests
iForest - Biogeosciences and Forestry,
Journal Year:
2024,
Volume and Issue:
17(1), P. 36 - 44
Published: Feb. 29, 2024
The
taper
and
merchantable
tree
volume
equations
are
the
most
used
models
in
forestry
because
of
their
accuracy
estimating
both
total
volume.
However,
numerous
studies
reported
that
artificial
neural
network
show
fewer
errors
a
greater
success
rate
as
compared
to
regression
models.
This
study
data
from
200
Crimean
pine
trees
Turkey’s
Central
Anatolia
Mediterranean
Region
assess
performance
(ANN)
Max-Burkhart’s
equation
for
accurate
results
were
obtained
using
3
hidden
layers
10
neurons
model
1
layer
100
model.
hyperbolic
tangent
sigmoid
function
was
ANN
analysis
hyper-parameter
customization.
Using
with
customization,
AAE
Max-Burkhart
decreased
9.315
6.939
(-25.5%),
RMSE
3.072
2.656
(-13.5%),
FI
increased
0.964
0.966
(+1.23%).
Similarly,
0.056
0.013
(-76.6%),
0.247
0.12
(-51.6%),
0.909
0.979
(+7.69%).
Our
showed
models’
predictions
more
reliable
equations.
We
resolved
overfitting
via
modification,
which
also
allowed
monitoring
impact
error
prediction
outputs
at
various
learning
rates.
It
possible
develop
lower
rates
training
validation
data,
consistent
growth
trends
sets.
Language: Английский
Ormancılıkta makine öğrenmesi kullanımı
Turkish Journal of Forestry | Türkiye Ormancılık Dergisi,
Journal Year:
2023,
Volume and Issue:
unknown, P. 150 - 177
Published: May 17, 2023
Gelişen
teknolojiyle
beraber
diğer
disiplinlerde
olduğu
gibi
ormancılıkta
da
geleneksel
uygulamaların
daha
ekonomik,
etkin,
hızlı
ve
kolay
yapılabilmesi
için
yenilikçi
yaklaşımların
kullanımına
talepler
ihtiyaçlar
artmaktadır.
Özellikle
son
dönemde
ortaya
çıkan
ormancılık
bilişimi,
hassas
ormancılık,
akıllı
Ormancılık
(Forestry)
4.0,
iklim-akıllı
sayısal
büyük
verisi
terimler
disiplinin
gündeminde
yer
almaya
başlamıştır.
Bunların
neticesinde
de
makine
öğrenmesi
otomatik
(AutoML)
modern
karar
verme
süreçlerine
entegre
edildiği
akademik
çalışmaların
sayısında
önemli
artışlar
gözlenmektedir.
Bu
çalışma,
algoritmalarının
Türkçe
dilinde
anlaşılırlığını
artırmak,
yaygınlaştırmak
ilgilenen
araştırmacılar
yönelik
bir
kaynak
olarak
değerlendirilmesi
amacıyla
konulmuştur.
Böylece
çeşitli
faaliyetlerinde
öğrenmesinin
hem
geçmişten
günümüze
nasıl
kullanıldığını
gelecekte
kullanım
potansiyelini
koyan
derleme
makalesinin
ulusal
literatüre
kazandırılması
amaçlanmıştır.
Integration of field measurements with unmanned aerial vehicle to predict forest inventory metrics at tree and stand scales in natural pure Crimean pine forests
International Journal of Remote Sensing,
Journal Year:
2024,
Volume and Issue:
45(12), P. 3846 - 3870
Published: June 4, 2024
Inventorying
forest
ecosystems
is
an
essential
part
of
management
planning.
However,
it
quite
costly
and
time-consuming,
particularly
for
larger
areas.
Recently,
significant
developments
have
been
made
in
unmanned
aerial
vehicle
(UAV)
technology
to
improve
the
cost
time
efficiency
inventory.
Therefore,
UAV
images
become
one
inventory
tools
that
produces
data
with
high
spatial
resolution
determining
resources.
This
study
aims
investigate
contribution
a
case
area
total
30
sample
plots
located
pure
natural
Crimean
pine
(Pinus
nigra
J.F.
Arnold
ssp.
pallasiana
(Lamb.)
Holmboe)
stands
Black
Sea
backward
region
Türkiye.
Total
tree
height
(h)
stem
volume
(v)
were
recorded
at
individual
level
(n
=
367),
number
trees
(N),
mean
(hmean),
top
(htop),
stand
basal
(BA)
(V)
calculated
plot
30)
from
both
field
UAV-based
data.
Pearson's
correlation
coefficients
(r)
h
v
0.96
0.72,
respectively,
highest
was
observed
hmean
-
htop
(r
0.96),
while
lowest
found
BA
0.54).
The
suitability
observation
prediction
values
assessed
using
t-test
levels.
According
results,
h,
v,
hmean,
htop,
V
metrics
be
compatible
(p
>
0.05),
but
not
N
<
0.05).
Overall
results
indicated
has
potential
used
can
contribute
determination
metrics.
Thereby,
saves
studies
helps
monitoring
dynamic
structure
ecosystem
effective
approach
Language: Английский
Predicting stem taper using artificial neural network and regression models for Scots pine (Pinus sylvestris L.) in northwestern Türkiye
Scandinavian Journal of Forest Research,
Journal Year:
2023,
Volume and Issue:
38(1-2), P. 97 - 104
Published: Feb. 17, 2023
ABSTRACTStem
taper
models
are
helpful
tools
for
predicting
diameter
of
a
tree
at
any
height
or
volume
stem
section.
In
this
study,
traditional
and
artificial
neural
network
(ANN)
approaches
were
used
to
predict
tapers
Scots
pine
individuals.
The
data
in
study
correspond
destructively
sampled
trees
even-aged
forest
stands
located
the
three
important
locations
where
grows
naturally
northwestern
Türkiye.
total,
regression
type
from
different
categories
an
ANN
model
developed
evaluated
both
statistically
graphically.
best
results
obtained
by
Kozak's
accounting
99%
total
variance
predictions.KEYWORDS:
Artificial
intelligenceBayesianmachine
learningsegmented
modelstem
diametertaper
modelvariable-form
AcknowledgementsI
very
much
appreciate
comments
associate
editor
four
anonymous
reviewers.
assistance
field
collection
staff
Küre,
Taşköprü
Yenice
Forest
Enterprises,
Dr.
Ferhat
Bolat
about
modeling
greatly
appreciated.Disclosure
statementNo
potential
conflict
interest
was
reported
author(s).Funding
statementThe
author
declares
no
specific
funding
work.
Language: Английский
Exploring machine learning modeling approaches for biomass and carbon dioxide weight estimation in Lebanon cedar trees
MJ Diamantopoulou,
No information about this author
Aydın Çömez,
No information about this author
Ramazan Özçelík
No information about this author
et al.
iForest - Biogeosciences and Forestry,
Journal Year:
2024,
Volume and Issue:
17(1), P. 19 - 28
Published: Feb. 12, 2024
Accurate
estimates
of
total
tree
biomass
are
critical
importance
to
obtain
reliable
estimation
the
carbon
dioxide
weight
sequestered
from
atmosphere
by
trees
and
forest
stands.
This
information
has
potential
guide
appropriate
management
decisions
which
allow
for
both
improvement
sustainability
implementation
multi-task
reforestation
designs
aimed
mitigate
detrimental
effects
climate
change.
The
current
laborious
tree-destructive
procedures
needed
attain
such
led
development
machine
learning
(ML)
models
at
providing
accurate
estimations
sequestering
atmospheric
dioxide.
We
tested
Levenberg-Marquardt
artificial
neural
network
support
vector
regression
techniques
as
an
alternative
non-linear
allometric
(NLR)
modelling
approaches
commonly
used
estimation.
developed
ML
using
primary
ground-truth
data
Lebanon
cedar
forests
in
Western
Inner
Anatolian
regions
Turkey,
their
predictions
were
compared
those
NLR
same
dataset.
results
showed
that
outperformed
accurately
estimating
its
components
(above-
belowground
dry
biomass,
branches
etc.),
(SVR)
gave
highest
accuracy
estimates.
Therefore,
reliably
estimated,
with
aim
supporting
best
practices
be
applied
stands
Turkey.
Language: Английский
Implementing linear mixed effects models to enhance estimation of the dimensional stability of wood of Laurus nobilis L.
Forest Systems,
Journal Year:
2024,
Volume and Issue:
33(2), P. e05 - e05
Published: June 14, 2024
Aim
of
study:
The
properties
wood
laurel
(Laurus
nobilis
L.)
have
not
yet
been
adequately
described.
For
example,
information
on
variables
related
to
dimensional
stability
during
drying
(shrinkage)
is
lacking,
even
though
this
a
key
factor
determining
the
suitability
material
for
industrial
uses
with
high
added
value.
aim
study
was
construct
models
estimating
shrinkage
by
using
density
as
predictor
variable.
Area
Seventeen
trees
were
felled
in
an
inland
area
Galicia
(north-western
Spain)
order
obtain
testing
and
modelling.
Material
methods:
experimental
tests
performed
958
small
standardised,
defect-free
specimens.
Main
results:
under
moderately
heavy
volumetrically
unstable.
Density
varied
only
slightly,
but
volumetric
statistically
significantly
within
between
trees.
A
linear
mixed
effects
model
constructed
predict
variation
from
oven-dry
density,
including
factors
tree
height
stem,
random
slopes
intercepts.
Research
highlights:
proved
valid
all
sampled
individuals
up
two
metres
thus
enabling
estimation
commercial
basal
logs.
Language: Английский
Farklı sıklık ölçütlerinin meşcere hacim tahmini üzerine etkisi
Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi,
Journal Year:
2024,
Volume and Issue:
25(2), P. 249 - 255
Published: Oct. 14, 2024
Meşcere
sıklık
ölçütü,
tek
ağaç
ve
meşcere
büyüme
simülasyonlarının
oluşturulmasında
en
önemli
yardımcı
açıklayıcı
değişkenlerden
birisidir.
Bu
çalışmada,
iki
farklı
ölçütü
değerlendirmeye
alınmış
bu
ölçütlerin
hacim
tahminleri
üzerindeki
etkileri
araştırılmıştır.
ölçütlerden
birisi―SD
göğüs
yüzeyinin
orta
çapına
oranıyla
ilgili
iken
diğeri―SDR
belirli
bir
karşılık
gelen
birim
alandaki
sayısının
meşcerede
bulunabilecek
maksimum
sayısına
bağlantılıdır.
Çalışma
kapsamındaki
veriler,
üç
ayrı
iklim
rejimine
sahip
alandan
rasgele
örnekleme
yöntemiyle
seçilen
toplam
108
örnek
elde
edilmiştir.
SD
SDR'yi
kullanarak
yeni
doğrusal
olmayan
modelleri
geliştirilmiş
geliştirilen
modellerin
başarısı
hata
ölçütlerine
bağlı
olarak
değerlendirilmiştir.
Elde
edilen
bulgulara
göre,
modeller
gözlemlenen
hacmindeki
varyansın
yaklaşık
%80’ni
açıklamıştır.
Ancak,
değişken
SD’yi
içeren
model
genç
(≈20-30
yıl)
ileri
yaş
sınıflarında
(≈60-80
%25
oranında
daha
fazla
hatalı
tahminler
sunmuştur.
Bununla
birlikte,
dinamik
kanuniyetleriyle
uyumlu
sonuçlar
üretmiş,
bonitet
değiştikçe
oranlı
büyümeyi
başarılı
şekilde
tahmin
etmiştir.
Mevcut
çalışmadan
bilgilere
olarak,
gerçekçi
edebilmek
için
SDR’nin
tercih
edilmesi
meşcerelerin
yapısını
temsil
edebilen
kullanılması
önerilmektedir.