Solving Engineering Optimization Problems Based on Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm
Wenjie Tang,
No information about this author
Li Cao,
No information about this author
Yaodan Chen
No information about this author
et al.
Biomimetics,
Journal Year:
2024,
Volume and Issue:
9(5), P. 298 - 298
Published: May 17, 2024
In
recent
years,
swarm
intelligence
optimization
methods
have
been
increasingly
applied
in
many
fields
such
as
mechanical
design,
microgrid
scheduling,
drone
technology,
neural
network
training,
and
multi-objective
optimization.
this
paper,
a
multi-strategy
particle
hybrid
dandelion
algorithm
(PSODO)
is
proposed,
which
based
on
the
problems
of
slow
speed
being
easily
susceptible
to
falling
into
local
extremum
ability
algorithm.
This
makes
whole
more
diverse
by
introducing
strong
global
search
unique
individual
update
rules
(i.e.,
rising,
landing).
The
ascending
descending
stages
also
help
introduce
changes
explorations
space,
thus
better
balancing
search.
experimental
results
show
that
compared
with
other
algorithms,
proposed
PSODO
greatly
improves
optimal
value
ability,
convergence
speed.
effectiveness
feasibility
are
verified
solving
22
benchmark
functions
three
engineering
design
different
complexities
CEC
2005
comparing
it
algorithms.
Language: Английский
Enhancing skin lesion classification: a CNN approach with human baseline comparison
PeerJ Computer Science,
Journal Year:
2025,
Volume and Issue:
11, P. e2795 - e2795
Published: April 15, 2025
This
study
presents
an
augmented
hybrid
approach
for
improving
the
diagnosis
of
malignant
skin
lesions
by
combining
convolutional
neural
network
(CNN)
predictions
with
selective
human
interventions
based
on
prediction
confidence.
The
algorithm
retains
high-confidence
CNN
while
replacing
low-confidence
outputs
expert
assessments
to
enhance
diagnostic
accuracy.
A
model
utilizing
EfficientNetB3
backbone
is
trained
datasets
from
ISIC-2019
and
ISIC-2020
SIIM-ISIC
melanoma
classification
challenges
evaluated
a
150-image
test
set.
model’s
are
compared
against
69
experienced
medical
professionals.
Performance
assessed
using
receiver
operating
characteristic
(ROC)
curves
area
under
curve
(AUC)
metrics,
alongside
analysis
resource
costs.
baseline
achieves
AUC
0.822,
slightly
below
performance
experts.
However,
improves
true
positive
rate
0.782
reduces
false
0.182,
delivering
better
minimal
involvement.
offers
scalable,
resource-efficient
solution
address
variability
in
image
analysis,
effectively
harnessing
complementary
strengths
humans
CNNs.
Language: Английский
Derin Öğrenme ve Özellik Seçimi Yaklaşımları Kullanılarak Göz Hastalıkları Tespiti
DÜMF Mühendislik Dergisi,
Journal Year:
2024,
Volume and Issue:
unknown
Published: May 1, 2024
Göz
sağlığı,
önemli
bir
halk
sağlığı
konusudur
ve
göz
hastalıkları
dünya
çapında
ciddi
sağlık
sorunlarına
neden
olmaktadır.
hastalıkları,
görme
yeteneğini
etkileyebilen
yaşam
kalitesini
ölçüde
azaltabilen
çeşitli
sorunlarıdır.
Bunlar
arasında
normal
glukom,
diyabetik
retinopati
katarakt
yer
tutmaktadır.
Bu
hastalıkların
erken
tanınması
uygun
tedavi
yöntemlerinin
uygulanması,
sağlığının
korunması
kayıplarının
en
aza
indirilmesi
açısından
hayati
öneme
sahiptir.
Son
dönemlerde,
hastalıklarının
teşhisi
için
yapay
zekâ
tekniklerinin
kullanımı
yaygınlaşmaktadır.
teknikler,
görüntü
analizi
derin
öğrenme
gibi
ileri
algoritmaları
içerir
tedavisi
araç
haline
gelmektedir.
çalışmada,
fundus
görüntülerinden
doğru
teşhis
edilmesi
özellik
seçimi
kombinasyonu
yoluyla
metasezgisel
yöntemlerle
optimize
edilmiş
metodoloji
geliştirilmiştir.
dört
sınıflı
veri
setinden
elde
edilen
görüntüler
üzerinde
çıkarımı
önceden
eğitilmiş
mimarileri
olan
ResNet101,
DenseNet201
DarkNet53
kullanılmıştır.
mimarilerden
özellikler
birleştirilerek
hibrit
havuzu
oluşturulmuştur.
Oluşturulan
bu
havuz,
görüntülerin
daha
etkili
şekilde
temsil
edilmesini
sağlamak
Elde
özelliklerin
içinden
önemsiz
olanları
elemek
optimizasyon
yöntemi
parçacık
sürü
optimizasyonu
(PSO)
Görüntülerin
sınıflandırılması
makine
öğrenmesi
yöntemlerinden
destek
vektör
makinesi
(SVM)
tercih
edilmiştir.
SVM'in
performansını
artırmak
amacıyla,
hiperparametrelerin
Bayesian
tekniği,
SVM'nin
iyi
ayarlanmasına
setine
uyum
sağlamasına
yardımcı
olmuştur.
Deneysel
çalışmaların
sonuçlarına
göre,
sınıflandırma
doğruluğu
%93.8
olarak
belirlenmiştir.
sonuçlar,
önerilen
yöntemin
tespitinde
kullanılabileceğini
göstermektedir.
çalışma,
zeka
tıbbi
görüntüleme
alanında
rol
oynayabileceğini
teşhisinde
kullanılabilecek
potansiyel
olduğunu
vurgulamaktadır.
Integrated bagging-RF learning model for diabetes diagnosis in middle-aged and elderly population
Yuanwu Shi,
No information about this author
Jiuye Sun
No information about this author
PeerJ Computer Science,
Journal Year:
2024,
Volume and Issue:
10, P. e2436 - e2436
Published: Oct. 31, 2024
As
the
population
ages,
increase
in
number
of
middle-aged
and
older
adults
with
diabetes
poses
new
challenges
to
allocation
resources
healthcare
system.
Developing
accurate
prediction
models
is
a
critical
public
health
strategy
improve
efficient
use
ensure
timely
effective
treatment.
In
order
identification
patients,
Bagging-RF
model
proposed.
study,
two
datasets
on
Kaggle
were
first
preprocessed,
including
unique
heat
coding,
outlier
removal,
age
screening,
after
which
data
categorized
into
three
groups,
50–60,
60–70,
70–80,
balanced
using
SMOTE
technique.
Then,
machine
learning
classifiers
trained
integrated
eight
other
classifiers.
Finally,
model’s
performance
was
evaluated
by
accuracy,
F
1
score,
metrics.
The
results
showed
that
outperformed
classifiers,
exhibiting
97.35%,
95.55%,
95.14%
accuracy
Score
at
Diabetes
Prediction
Dataset
for
groups
70–80;
97.03%,
94.90%,
93.70%
Dataset.
95.13%
Score;
accuracy;
94.89%,
addition,
while
models,
such
as
ET,
RF,
Adaboost,
XGB,
fail
outperform
Bagging-RF,
they
also
show
excellent
performance.
Language: Английский
Automatic Detection of Gastrointestinal Diseases Using Wireless Capsule Endoscopy Images
NATURENGS MTU Journal of Engineering and Natural Sciences Malatya Turgut Ozal University,
Journal Year:
2024,
Volume and Issue:
unknown
Published: Nov. 26, 2024
Gastrointestinal
(GI)
diseases
are
various
disorders
related
to
the
digestive
system.
This
system
includes
esophagus,
stomach,
small
and
large
intestines,
liver,
gallbladder
pancreas,
starting
from
mouth.
Early
diagnosis
is
very
important
in
treatment
of
disease.
The
earlier
disease
diagnosed,
higher
chance
patient
being
treated.
In
recent
years,
it
known
that
artificial
intelligence
techniques
have
been
widely
used
classification.
Among
techniques,
deep
learning
methods
produce
successful
results
image
classification
frequently
used.
success
has
tried
be
GI
diseases.
Within
scope
this
study,
was
detect
bleeding
or
lesions
publicly
available
wireless
capsule
endoscopy
(WCE)
images.
As
a
result
experiments,
5
different
architectures
were
Features
extracted
two
showed
highest
accuracy
combined.
Neighborhood
Component
Analysis
(NCA)
dimension
reduction
method
applied
obtained
feature
map
hybrid
model
obtained.
It
seen
proposed
achieved
an
value
86.3%.
Language: Английский