Highly efficient maximum-likelihood identification methods for bilinear systems with colored noises DOI
Meihang Li,

Ximei Liu,

Yamin Fan

и другие.

Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering, Год журнала: 2024, Номер 238(10), С. 1763 - 1784

Опубликована: Июль 27, 2024

This paper mainly discussed the highly efficient iterative identification methods for bilinear systems with autoregressive moving average noise. Firstly, input-output representation of is derived through eliminating unknown state variables in model. Then based on maximum-likelihood principle, a gradient-based (ML-GI) algorithm proposed to identify parameters colored noises. For improving computational efficiency, original model divided into three sub-identification models smaller dimensions and fewer parameters, hierarchical (H-ML-GI) by using principle. A (GI) given comparison. Finally, algorithms are verified simulation example practical continuous stirred tank reactor (CSTR) example. The results show that effective identifying noises H-ML-GI has higher efficiency faster convergence rate than ML-GI GI algorithm.

Язык: Английский

Recursive identification methods for general stochastic systems with colored noises by using the hierarchical identification principle and the filtering identification idea DOI
Feng Ding, Ling Xu, Xiao Zhang

и другие.

Annual Reviews in Control, Год журнала: 2024, Номер 57, С. 100942 - 100942

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

72

Adaptive Multi-Innovation Gradient Identification Algorithms for a Controlled Autoregressive Autoregressive Moving Average Model DOI
Ling Xu, Huan Xu, Feng Ding

и другие.

Circuits Systems and Signal Processing, Год журнала: 2024, Номер 43(6), С. 3718 - 3747

Опубликована: Март 13, 2024

Язык: Английский

Процитировано

56

Joint iterative state and parameter estimation for bilinear systems with autoregressive noises via the data filtering DOI
Siyu Liu, Yanjiao Wang, Feng Ding

и другие.

ISA Transactions, Год журнала: 2024, Номер 147, С. 337 - 349

Опубликована: Фев. 3, 2024

Язык: Английский

Процитировано

51

Highly-efficient filtered hierarchical identification algorithms for multiple-input multiple-output systems with colored noises DOI

Haoming Xing,

Feng Ding, Xiao Zhang

и другие.

Systems & Control Letters, Год журнала: 2024, Номер 186, С. 105762 - 105762

Опубликована: Март 14, 2024

Язык: Английский

Процитировано

50

Online identification methods for a class of Hammerstein nonlinear systems using the adaptive particle filtering DOI
Huan Xu, Ling Xu, Shaobo Shen

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 186, С. 115181 - 115181

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

35

Online identification of Hammerstein systems with B‐spline networks DOI
Yanjiao Wang, Yiting Liu, Jiehao Chen

и другие.

International Journal of Adaptive Control and Signal Processing, Год журнала: 2024, Номер 38(6), С. 2074 - 2092

Опубликована: Март 27, 2024

Summary Nonlinear systems widely exist in real‐word applications and the research for these has enjoyed a long fruitful history, including system identification community. However, modeling nonlinear is often quite challenging still remains many unresolved questions. This article considers online issue of Hammerstein systems, whose static function modeled by B‐spline network. First, model studied constructed using bilinear parameter decomposition model. Second, recursive algorithms are proposed to find estimates moving data window particle swarm optimization procedure, show that converge their true values with low computational burden. Numerical examples also given test effectiveness algorithms.

Язык: Английский

Процитировано

23

Interpretability Research of Deep Learning: A Literature Survey DOI

Biao Xu,

Guanci Yang

Information Fusion, Год журнала: 2024, Номер 115, С. 102721 - 102721

Опубликована: Окт. 9, 2024

Язык: Английский

Процитировано

22

Decomposition‐based maximum likelihood gradient iterative algorithm for multivariate systems with colored noise DOI
Lijuan Liu

International Journal of Robust and Nonlinear Control, Год журнала: 2024, Номер 34(11), С. 7265 - 7284

Опубликована: Март 28, 2024

Summary In this paper, we use the maximum likelihood principle and negative gradient search to study identification issues of multivariate equation‐error systems whose outputs are contaminated by an moving average noise process. The model decomposition technique is used decompose system into several regressive subsystems based on number outputs. order improve parameter estimation accuracy, a decomposition‐based iterative algorithm proposed means method. numerical simulation example indicates that method has better results than compared algorithm.

Язык: Английский

Процитировано

20

Data Filtering-Based Maximum Likelihood Gradient-Based Iterative Algorithm for Input Nonlinear Box–Jenkins Systems with Saturation Nonlinearity DOI
Yamin Fan, Ximei Liu, Meihang Li

и другие.

Circuits Systems and Signal Processing, Год журнала: 2024, Номер 43(11), С. 6874 - 6910

Опубликована: Авг. 1, 2024

Язык: Английский

Процитировано

20

Auxiliary model maximum likelihood gradient‐based iterative identification for feedback nonlinear systems DOI
Lijuan Liu, Fu Li, Junxia Ma

и другие.

Optimal Control Applications and Methods, Год журнала: 2024, Номер 45(5), С. 2346 - 2363

Опубликована: Июнь 17, 2024

Abstract This article considers the iterative identification problems for a class of feedback nonlinear systems with moving average noise. The model contains both dynamic linear module and static module, which brings challenges to identification. By utilizing key term separation technique, unknown parameters from modules are included in parameter vector. Furthermore, an auxiliary maximum likelihood gradient‐based algorithm is derived estimate parameters. In addition, stochastic gradient as comparison. numerical simulation results indicate that can effectively get more accurate estimates than algorithm.

Язык: Английский

Процитировано

19