A hybrid forecasting model to improve cost prediction accuracy in green building projects with machine learning DOI
Zhijiang Wu, Mengyao Liu, Guofeng Ma

и другие.

Engineering Construction & Architectural Management, Год журнала: 2025, Номер unknown

Опубликована: Фев. 10, 2025

Purpose The objective of this study is to accurately predict the cost green buildings provide quantifiable criteria for investment decisions from investors. Design/methodology/approach This proposes a hybrid prediction model ML-based GBPs and obtains parameters (PPs) associated with project characteristics through data mining (DM) techniques. integrates principal component analysis (PCA) method perform parameter dimensionality reduction (PDR) on large number raw variables independent characteristic terms. Moreover, support vector machine (SVM) algorithm improved optimize results integrated prediction. Findings show that mean absolute relative errors proposed in are equal 39.78 0.02, respectively, which much lower than those traditional SVM MRA model. also achieved better accuracy ( R 2 = 0.319) superior different Originality/value Theoretically, developed can reliably while capturing GBPs, bold attempt at comprehensive approach. Practically, provides developers new capable costs projects ambiguous definitions complex characteristics.

Язык: Английский

Predicting existing tunnel deformation from adjacent foundation pit construction using hybrid machine learning DOI

Xianguo Wu,

Zongbao Feng, Jun Liu

и другие.

Automation in Construction, Год журнала: 2024, Номер 165, С. 105516 - 105516

Опубликована: Июнь 11, 2024

Язык: Английский

Процитировано

27

Safety risk perception and control of water inrush during tunnel excavation in karst areas: An improved uncertain information fusion method DOI

Xianguo Wu,

Zongbao Feng,

Sai Yang

и другие.

Automation in Construction, Год журнала: 2024, Номер 163, С. 105421 - 105421

Опубликована: Апрель 30, 2024

Язык: Английский

Процитировано

20

Enhancing mix proportion design of low carbon concrete for shield segment using a combination of Bayesian optimization-NGBoost and NSGA-III algorithm DOI
Yuan Cao,

F. Y. Su,

Maxwell Fordjour Antwi-Afari

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 465, С. 142746 - 142746

Опубликована: Июнь 3, 2024

Язык: Английский

Процитировано

16

Multisource information fusion for real-time prediction and multiobjective optimization of large-diameter slurry shield attitude DOI

Xianguo Wu,

Jingyi Wang, Zongbao Feng

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 250, С. 110305 - 110305

Опубликована: Июнь 24, 2024

Язык: Английский

Процитировано

16

Application of hybrid machine learning algorithm in multi-objective optimization of green building energy efficiency DOI
Yi Zhu, Wen Xu, Wenhong Luo

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 133581 - 133581

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

5

A machine learning-based two-stage integrated framework for cost reasonableness prediction of green building projects DOI
Zhijiang Wu, Mengyao Liu, Guofeng Ma

и другие.

Journal of Building Engineering, Год журнала: 2025, Номер unknown, С. 111733 - 111733

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

4

Assessment of the vulnerability of urban metro to rainstorms based on improved cloud model and evidential reasoning DOI
Hongyu Chen, Qiping Shen, Zongbao Feng

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2025, Номер 157, С. 106353 - 106353

Опубликована: Янв. 2, 2025

Язык: Английский

Процитировано

2

Optimal loading distribution of chillers based on an improved beluga whale optimization for reducing energy consumption DOI
Ze Li, Jiayi Gao,

Junfei Guo

и другие.

Energy and Buildings, Год журнала: 2024, Номер 307, С. 113942 - 113942

Опубликована: Фев. 3, 2024

Язык: Английский

Процитировано

15

Sustainability evaluation of urban large-scale infrastructure construction based on dynamic fuzzy cognitive map DOI
Hongyu Chen,

Shidong Cheng,

Yawei Qin

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 449, С. 141774 - 141774

Опубликована: Март 12, 2024

Язык: Английский

Процитировано

15

BIM-based building performance assessment of green buildings - A case study from China DOI Creative Commons
Yang Liu, Witold Pedrycz, Muhammet Deveci

и другие.

Applied Energy, Год журнала: 2024, Номер 373, С. 123977 - 123977

Опубликована: Июль 25, 2024

In China, traditional buildings have begun to exhibit a range of issues, such as elevated levels energy consumption and pollution. Consequently, these concerns led substantial resource inefficiency environmental degradation. The evaluation examination green are utmost importance in promoting sustainable development. current building assessment framework is intricate lacks sufficient development terms visual representation. Developing strategy during the initial design phase multifaceted process that necessitates allocation human, material, financial, temporal resources. this study, we propose an incorporates 15 s-level 45 three-level indicator system, along with 4-level classification standard. This developed based on most recent Chinese Assessment Standard for Green Building utilization Information Modeling (BIM) database. Furthermore, integration BIM Pathfinder software employed assess safety aspects buildings. On top that, combination Ecotect utilized evaluate performed case study teaching located at university central specifically focusing simulation practices. sequential calculation involves determining duration personnel evacuation, assessing lighting conditions, evaluating thermal analyzing sound examining wind conditions. addition, efforts were made optimize indicators requiring enhancement order enhance efficacy

Язык: Английский

Процитировано

15