Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition DOI Creative Commons
Yulong Bai,

Ming-De Liu,

Lin Ding

и другие.

Applied Energy, Год журнала: 2021, Номер 301, С. 117461 - 117461

Опубликована: Авг. 6, 2021

Due to the strong randomness of wind speed, power generation is difficult integrate into grid. It very important predict speed reliably and accurately so that energy can be utilized effectively. In this study, obtain accurate prediction results, a combined VMD-D-ESN model based on variational mode decomposition (VMD), double-layer staged training echo state network (D-ESN) genetic algorithm (GA) optimization proposed. First, preprocesses original data with VMD then uses D-ESN each decomposed subsequence. Lastly, final value obtained by combining all predicted subsequences. model's structure, first layer selects length set, second has ability correct error in layer. practical application case using six different collection sites, ten models are established compare performance proposed model. Compared other traditional models, results show combines structure achieves high accuracy stability available datasets. Additionally, also shows use strongly improves

Язык: Английский

A review of wind speed and wind power forecasting with deep neural networks DOI
Yun Wang, Runmin Zou, Fang Liu

и другие.

Applied Energy, Год журнала: 2021, Номер 304, С. 117766 - 117766

Опубликована: Сен. 10, 2021

Язык: Английский

Процитировано

560

Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features DOI

Zeni Zhao,

Sining Yun,

Lingyun Jia

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 121, С. 105982 - 105982

Опубликована: Фев. 22, 2023

Язык: Английский

Процитировано

163

Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks DOI
Dan Li, Fuxin Jiang, Min Chen

и другие.

Energy, Год журнала: 2021, Номер 238, С. 121981 - 121981

Опубликована: Сен. 7, 2021

Язык: Английский

Процитировано

140

Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction DOI
Lei Hua, Chu Zhang, Peng Tian

и другие.

Energy Conversion and Management, Год журнала: 2021, Номер 252, С. 115102 - 115102

Опубликована: Дек. 14, 2021

Язык: Английский

Процитировано

131

A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD DOI
Jiale Li,

Zihao Song,

Xuefei Wang

и другие.

Energy, Год журнала: 2022, Номер 251, С. 123848 - 123848

Опубликована: Апрель 4, 2022

Язык: Английский

Процитировано

125

New developments in wind energy forecasting with artificial intelligence and big data: a scientometric insight DOI Creative Commons

Erlong Zhao,

Shaolong Sun, Shouyang Wang

и другие.

Data Science and Management, Год журнала: 2022, Номер 5(2), С. 84 - 95

Опубликована: Июнь 1, 2022

Accurate forecasting results are crucial for increasing energy efficiency and lowering consumption in wind energy. Big data artificial intelligence (AI) have great potential forecasting. Although the literature on this subject is extensive, it lacks a comprehensive research status survey. In identifying evolution rules of big AI methods forecasting, paper summarizes studies over last two decades. The existing types, analysis techniques, classified sorted by combining reviews scientometrics methods. Furthermore, trend determined based combing hotspots frontier progress. Finally, research's opportunities, challenges, implications from various perspectives. serve as foundation future promote further development

Язык: Английский

Процитировано

122

Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization DOI

Sheng-Xiang Lv,

Lin Wang

Applied Energy, Год журнала: 2022, Номер 311, С. 118674 - 118674

Опубликована: Фев. 12, 2022

Язык: Английский

Процитировано

87

A combined short-term wind speed forecasting model based on CNN–RNN and linear regression optimization considering error DOI
Jikai Duan, Mingheng Chang,

Xiangyue Chen

и другие.

Renewable Energy, Год журнала: 2022, Номер 200, С. 788 - 808

Опубликована: Окт. 4, 2022

Язык: Английский

Процитировано

84

Wind speed prediction using a hybrid model of EEMD and LSTM considering seasonal features DOI Creative Commons
Yi Yan, Xuerui Wang, Fei Ren

и другие.

Energy Reports, Год журнала: 2022, Номер 8, С. 8965 - 8980

Опубликована: Июль 14, 2022

As a clean and renewable energy source, wind power is of great significance for addressing global shortages environmental pollution. However, the uncertainty speed hinders direct use power, resulting in high proportion abandoned wind. Therefore, accurate prediction improving utilization rate energy. In this study, hybrid model proposed based on seasonal autoregressive integrated moving average (SARIMA), ensemble empirical mode decomposition (EEMD), long short-term memory (LSTM) methods. First, original data were resampled to obtain within time scales 15, 30, 60 min. The SARIMA was used extract linear features nonlinear residual sequences series at different scales, EEMD decompose sequence intrinsic functions (IMFs) sub-residual sequences. For IMFs obtained after decomposition, LSTM method training, predicted IMFs, sequence, series, final speed. To verify superiority large farm as case study. Finally, compared with other models, verifying that experimental has higher accuracy.

Язык: Английский

Процитировано

79

Multi-step-ahead stock price index forecasting using long short-term memory model with multivariate empirical mode decomposition DOI

Changrui Deng,

Yanmei Huang, Najmul Hasan

и другие.

Information Sciences, Год журнала: 2022, Номер 607, С. 297 - 321

Опубликована: Июнь 4, 2022

Язык: Английский

Процитировано

77