Soft Computing, Год журнала: 2023, Номер 27(23), С. 17833 - 17865
Опубликована: Авг. 16, 2023
Язык: Английский
Soft Computing, Год журнала: 2023, Номер 27(23), С. 17833 - 17865
Опубликована: Авг. 16, 2023
Язык: Английский
IEEE Transactions on Evolutionary Computation, Год журнала: 2023, Номер 28(4), С. 1156 - 1176
Опубликована: Июль 5, 2023
Maximizing the classification accuracy and minimizing number of selected features are two primary objectives in feature selection, which is inherently a multiobjective task. Multiobjective selection enables us to gain various insights from complex data addition dimensionality reduction improved accuracy, has attracted increasing attention researchers practitioners. Over past decades, significant advancements have been achieved both methodologies applications, but not well summarized discussed. To fill this gap, paper presents broad survey on existing research classification, focusing up-to-date approaches, current challenges, future directions. be specific, we categorize basis different criteria, provide detailed descriptions representative methods each category. Additionally, summarize list successful real-world applications domains, exemplify their practical value demonstrate abilities providing set trade-off subsets meet requirements decision makers. We also discuss key challenges shed lights emerging directions for developments selection.
Язык: Английский
Процитировано
67Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Янв. 6, 2024
Abstract In this paper, a modified version of Dwarf Mongoose Optimization Algorithm (DMO) for feature selection is proposed. DMO novel technique the swarm intelligence algorithms which mimic foraging behavior Mongoose. The developed method, named Chaotic (CDMO), considered wrapper-based model selects optimal features that give higher classification accuracy. To speed up convergence and increase effectiveness DMO, ten chaotic maps were used to modify key elements movement during optimization process. evaluate efficiency CDMO, different UCI datasets are compared against original other well-known Meta-heuristic techniques, namely Ant Colony (ACO), Whale algorithm (WOA), Artificial rabbit (ARO), Harris hawk (HHO), Equilibrium optimizer (EO), Ring theory based harmony search (RTHS), Random switching serial gray-whale (RSGW), Salp on particle (SSAPSO), Binary genetic (BGA), Adaptive (ASGW) Particle Swarm (PSO). experimental results show CDMO gives performance than methods in selection. High value accuracy (91.9–100%), sensitivity (77.6–100%), precision (91.8–96.08%), specificity (91.6–100%) F-Score (90–100%) all obtained. addition, proposed method further assessed CEC’2022 benchmarks functions.
Язык: Английский
Процитировано
30Swarm and Evolutionary Computation, Год журнала: 2024, Номер 90, С. 101661 - 101661
Опубликована: Июль 22, 2024
Язык: Английский
Процитировано
20Swarm and Evolutionary Computation, Год журнала: 2024, Номер 87, С. 101543 - 101543
Опубликована: Апрель 4, 2024
Язык: Английский
Процитировано
19Archives of Computational Methods in Engineering, Год журнала: 2022, Номер 30(3), С. 1979 - 2012
Опубликована: Дек. 20, 2022
Abstract The article reviewed the four major Bioinspired intelligent algorithms for agricultural applications, namely ecological, swarm-intelligence-based, ecology-based, and multi-objective algorithms. key emphasis was placed on variants of swarm intelligence algorithms, artificial bee colony (ABC), genetic algorithm, flower pollination algorithm (FPA), particle swarm, ant colony, firefly fish Krill herd because they had been widely employed in sector. There a broad consensus among scholars that certain BIAs' were more effective than others. For example, Ant Colony Optimization Algorithm best suited farm machinery path optimization pest detection, other applications. On contrary, useful determining plant evapotranspiration rates, which predicted water requirements irrigation process. Despite promising adoption hyper-heuristic agriculture remained low. No universal could perform multiple functions farms; different designed to specific functions. Secondary concerns relate data integrity cyber security, considering history cyber-attacks smart farms. concerns, benefits associated with BIAs outweighed risks. average, farmers can save 647–1866 L fuel is equivalent US$734-851, use GPS-guided systems. accuracy mitigated risk errors applying pesticides, fertilizers, irrigation, crop monitoring better yields.
Язык: Английский
Процитировано
43Knowledge-Based Systems, Год журнала: 2023, Номер 283, С. 111218 - 111218
Опубликована: Ноя. 21, 2023
Язык: Английский
Процитировано
34Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 126, С. 107136 - 107136
Опубликована: Сен. 21, 2023
Язык: Английский
Процитировано
33Signal Processing, Год журнала: 2023, Номер 217, С. 109341 - 109341
Опубликована: Ноя. 23, 2023
Язык: Английский
Процитировано
28Applied Energy, Год журнала: 2023, Номер 353, С. 122135 - 122135
Опубликована: Окт. 24, 2023
Язык: Английский
Процитировано
25Applied Intelligence, Год журнала: 2024, Номер 54(17-18), С. 7750 - 7764
Опубликована: Июнь 13, 2024
Язык: Английский
Процитировано
15