Studies in systems, decision and control, Год журнала: 2024, Номер unknown, С. 369 - 395
Опубликована: Янв. 1, 2024
Язык: Английский
Studies in systems, decision and control, Год журнала: 2024, Номер unknown, С. 369 - 395
Опубликована: Янв. 1, 2024
Язык: Английский
Urban Science, Год журнала: 2025, Номер 9(4), С. 106 - 106
Опубликована: Апрель 1, 2025
The increasing frequency and severity of disasters in urban areas demand sustainable, smart disaster management strategies to leverage technological advancements. This study provides a comprehensive review mobile apps for awareness available the Google Play Store, with particular emphasis on addressing flood readiness response. Mobile have become indispensable tools disseminating immediate notifications, facilitating emergency communication, coordinating response activities. A total 77 Store were identified evaluated using systematic search. evaluation criteria included user ratings, download counts, key crisis functionalities such as real-time alerts, contact directories, preparedness checklists, reporting capabilities. findings emphasised following: (a) importance integrating cutting-edge technologies, i.e., AI IoT, enhance functionality, accuracy, capacity applications; (b) use crowdsourcing valuable mechanism enriching inclusive responsible data; (c) enabling timely updates fostering community engagement; (d) establishing agency engagements, gamified elements, reciprocal communication tools, push-to-talk features ensure long-term sustainability apps. By incorporating these insights, can significantly resilience improve effectiveness responding natural this digital age.
Язык: Английский
Процитировано
1Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 122010 - 122010
Опубликована: Окт. 9, 2023
Язык: Английский
Процитировано
14International Journal of Disaster Risk Reduction, Год журнала: 2023, Номер 97, С. 104067 - 104067
Опубликована: Окт. 1, 2023
Язык: Английский
Процитировано
12Systems, Год журнала: 2024, Номер 12(6), С. 215 - 215
Опубликована: Июнь 18, 2024
Every organization typically comprises various internal components, including regional branches, operations centers/field offices, major transportation hubs, and operational units, among others, housing a population susceptible to disaster impacts. Moreover, organizations often possess resources such as staff, vehicles, medical facilities, which can mitigate human casualties address needs across affected areas. However, despite the importance of managing disasters within organizational networks, there remains research gap in development mathematical models for scenarios, specifically incorporating offices external stakeholders relief centers. Addressing this gap, study examines an optimization model both before after planning humanitarian supply chain logistical framework organization. The areas are defined stakeholders, facilities. A mixed-integer nonlinear is formulated minimize overall costs, considering factors penalty costs untreated injuries demand, delays rescue item distribution operations, waiting injured emergency vehicles air ambulances. implemented using GAMS software 47.1.0 test problems different scales, with Grasshopper Optimization Algorithm proposed larger-scale scenarios. Numerical examples provided show effectiveness feasibility validate metaheuristic approach. Sensitivity analysis conducted assess model’s performance under conditions, key managerial insights implications discussed.
Язык: Английский
Процитировано
4Advances in environmental engineering and green technologies book series, Год журнала: 2025, Номер unknown, С. 73 - 114
Опубликована: Янв. 24, 2025
This chapter examines using artificial intelligence (AI) and deep learning (DL) in disaster management. It describes a paradigm shift towards proactive measures preventing managing natural disasters. Traditional, reactive methods often reach their limits. At the same time, AI-based approaches can improve early warning systems allocate resources more efficiently through analysis of large, heterogeneous data sets ability to recognize complex patterns. The article highlights application DL models, such as Convolutional Neural Networks (CNNs), analyze satellite imagery utility response. Both technical ethical challenges are discussed, particularly protection, bias, transparency models. Finally, framework is presented that provides guidelines for effective responsible use AI management promotes long-term sustainability fairness this area.
Язык: Английский
Процитировано
0Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 375 - 400
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0International Journal of Disaster Risk Reduction, Год журнала: 2025, Номер unknown, С. 105593 - 105593
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Progress in Disaster Science, Год журнала: 2024, Номер unknown, С. 100397 - 100397
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
2International Journal of Disaster Risk Reduction, Год журнала: 2024, Номер 114, С. 104975 - 104975
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
1IFIP advances in information and communication technology, Год журнала: 2023, Номер unknown, С. 92 - 104
Опубликована: Дек. 12, 2023
Язык: Английский
Процитировано
3