Trophic status observations for Honghu Lake in China from 2000 to 2021 using Landsat Satellites DOI Creative Commons
Fan Yang,

Baoyin He,

Yadong Zhou

и другие.

Ecological Indicators, Год журнала: 2023, Номер 146, С. 109898 - 109898

Опубликована: Янв. 12, 2023

Eutrophication of lakes harms aquatic organisms, changes the function and causes water pollution, which has affected global public health. As an internationally important wetland reserve, Honghu Lake is polluted to varying degrees eutrophication trend accelerated. The objective this study quarterly monitor assess trophic status from 2000 2021 using level index (TLI). TLI was retrieved by developing a semi-empirical model based on radial basis neural network (RBFNN), air temperature data were added as input parameters, forming control group with that did not include data. Based 178 Landsat images 2021, over last 20 years successfully determined. main findings are follows: 1) accuracy retrieval model, included (R2 = 0.723, RMSE 4.971), significantly higher than without 0.197, 10.453); 2) waters in northwestern part those observed other lake water; 3) There significant seasonal fluctuations Lake. highest values summer autumn, while lowest winter spring; 4) accelerated 2013 onwards, showing change status, light eutrophic mid-eutrophic. Our results indicate method more predictive. Moreover, for entire determined, may contribute protection environment.

Язык: Английский

Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives DOI
Sameh S. Ali,

Rania Al-Tohamy,

Eleni Koutra

и другие.

The Science of The Total Environment, Год журнала: 2021, Номер 792, С. 148359 - 148359

Опубликована: Июнь 8, 2021

Язык: Английский

Процитировано

158

Microalgae-bacteria consortium for wastewater treatment and biomass production DOI
Lisa Aditya, T.M.I. Mahlia, Luong N. Nguyen

и другие.

The Science of The Total Environment, Год журнала: 2022, Номер 838, С. 155871 - 155871

Опубликована: Май 11, 2022

Язык: Английский

Процитировано

138

Nanotechnology – A new frontier of nano-farming in agricultural and food production and its development DOI
Mohammad Haris, Touseef Hussain, Heba I. Mohamed

и другие.

The Science of The Total Environment, Год журнала: 2022, Номер 857, С. 159639 - 159639

Опубликована: Окт. 22, 2022

Язык: Английский

Процитировано

135

Indices and models of surface water quality assessment: Review and perspectives DOI
Tao Yan, Shui‐Long Shen, Annan Zhou

и другие.

Environmental Pollution, Год журнала: 2022, Номер 308, С. 119611 - 119611

Опубликована: Июнь 15, 2022

Язык: Английский

Процитировано

114

Eutrophication control of large shallow lakes in China DOI
Boqiang Qin, Yunlin Zhang, Guangwei Zhu

и другие.

The Science of The Total Environment, Год журнала: 2023, Номер 881, С. 163494 - 163494

Опубликована: Апрель 15, 2023

Язык: Английский

Процитировано

101

Nitrogen doped biochar derived from algae as persulfate activator for the degradation of tetracycline: Role of exogenous N doping and electron transfer pathway DOI
Qin Yin,

Haihong Yan,

Yu Liang

и другие.

Separation and Purification Technology, Год журнала: 2023, Номер 318, С. 123970 - 123970

Опубликована: Май 3, 2023

Язык: Английский

Процитировано

52

Advancing reservoirs water quality parameters estimation using Sentinel-2 and Landsat-8 satellite data with machine learning approaches DOI Creative Commons
Md. Abdullah Al Mamun, Mahmudul Hasan,

Kwang-Guk An

и другие.

Ecological Informatics, Год журнала: 2024, Номер 81, С. 102608 - 102608

Опубликована: Апрель 21, 2024

Reservoir eutrophication, caused by human activities and climate change, has emerged as a critical environmental concern that attracted both governmental public attention. However, accurate measurement of water quality parameters, such chlorophyll (CHL-a), clarity (Secchi depth; SD), total suspended solids (TSS), in inland waters is challenging due to the optical complexity individual bodies, which impedes optimization conventional bio-optical algorithms. The aim this study was demonstrate viability harmonizing Sentinel-2 Multi-Spectral Imager (MSI) Landsat-8 Operational Land (OLI) satellite imagery surface reflectance (SR) products facilitate monitoring reservoir CHL-a, SD, TSS using Google Earth Engine (GEE) platform machine learning Machine models were trained OLI MSI identify bands combinations predicting TSS. Among algorithms tested, random forest (RF) (S-2 MSI: R2 = 0.61, mean absolute error [MAE] 6.56%, root-mean-square [RMSE] 12.51 μg/L, L-8 OLI: 0.56, MAE 8.44%, RMSE 16.01 μg/L) yielded best results test set for CHL-a prediction from OLI, outperforming k-nearest neighbor (KNN), AdaBoost, artificial neural network (ANN) models. It also showed superior performance SD prediction. feature importance analysis revealed specific band ratios, (red/red edge1)*red edge2 red/blue significant predictors ratio green highly predictive respectively. fall predictions varying trophic levels reservoirs. indicated 2% reservoirs oligotrophic, while 46%, 43%, 9% mesotrophic, eutrophic, hypertrophic, Meanwhile, 51% 6%, 35%, 8% Overall, demonstrates effectiveness estimating parameters This approach potential yield valuable insights aiding assessment management at regional, national, global levels.

Язык: Английский

Процитировано

20

Long-term (2003−2021) evolution trend of water quality in the Three Gorges Reservoir: An evaluation based on an enhanced water quality index DOI
Chong Sang, Lu Tan, Qinghua Cai

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 915, С. 169819 - 169819

Опубликована: Янв. 6, 2024

Язык: Английский

Процитировано

19

Enhancing phosphorus source apportionment in watersheds through species-specific analysis DOI
Yuansi Hu, Mengli Chen,

Jia Pu

и другие.

Water Research, Год журнала: 2024, Номер 253, С. 121262 - 121262

Опубликована: Фев. 7, 2024

Язык: Английский

Процитировано

18

Predicting Chlorophyll-a Concentrations in the World’s Largest Lakes Using Kolmogorov-Arnold Networks DOI
Mohammad Javad Saravani, Roohollah Noori, Changhyun Jun

и другие.

Environmental Science & Technology, Год журнала: 2025, Номер unknown

Опубликована: Янв. 16, 2025

Accurate prediction of chlorophyll-a (Chl-a) concentrations, a key indicator eutrophication, is essential for the sustainable management lake ecosystems. This study evaluated performance Kolmogorov-Arnold Networks (KANs) along with three neural network models (MLP-NN, LSTM, and GRU) traditional machine learning tools (RF, SVR, GPR) predicting time-series Chl-a concentrations in large lakes. Monthly remote-sensed data derived from Aqua-MODIS spanning September 2002 to April 2024 were used. The based on their forecasting capabilities March August 2024. KAN consistently outperformed others both test forecast (unseen data) phases demonstrated superior accuracy capturing trends, dynamic fluctuations, peak concentrations. Statistical evaluation using ranking metrics critical difference diagrams confirmed KAN's robust across diverse sites, further emphasizing its predictive power. Our findings suggest that KAN, which leverages KA representation theorem, offers improved handling nonlinearity long-term dependencies data, outperforming grounded universal approximation theorem algorithms.

Язык: Английский

Процитировано

13