Environmental Pollution, Год журнала: 2024, Номер 345, С. 123453 - 123453
Опубликована: Янв. 27, 2024
Язык: Английский
Environmental Pollution, Год журнала: 2024, Номер 345, С. 123453 - 123453
Опубликована: Янв. 27, 2024
Язык: Английский
The Science of The Total Environment, Год журнала: 2021, Номер 792, С. 148359 - 148359
Опубликована: Июнь 8, 2021
Язык: Английский
Процитировано
163The Science of The Total Environment, Год журнала: 2022, Номер 838, С. 155871 - 155871
Опубликована: Май 11, 2022
Язык: Английский
Процитировано
139The Science of The Total Environment, Год журнала: 2022, Номер 857, С. 159639 - 159639
Опубликована: Окт. 22, 2022
Язык: Английский
Процитировано
136Environmental Pollution, Год журнала: 2022, Номер 308, С. 119611 - 119611
Опубликована: Июнь 15, 2022
Язык: Английский
Процитировано
115The Science of The Total Environment, Год журнала: 2023, Номер 881, С. 163494 - 163494
Опубликована: Апрель 15, 2023
Язык: Английский
Процитировано
103Separation and Purification Technology, Год журнала: 2023, Номер 318, С. 123970 - 123970
Опубликована: Май 3, 2023
Язык: Английский
Процитировано
53Ecological Informatics, Год журнала: 2024, Номер 81, С. 102608 - 102608
Опубликована: Апрель 21, 2024
Reservoir eutrophication, caused by human activities and climate change, has emerged as a critical environmental concern that attracted both governmental public attention. However, accurate measurement of water quality parameters, such chlorophyll (CHL-a), clarity (Secchi depth; SD), total suspended solids (TSS), in inland waters is challenging due to the optical complexity individual bodies, which impedes optimization conventional bio-optical algorithms. The aim this study was demonstrate viability harmonizing Sentinel-2 Multi-Spectral Imager (MSI) Landsat-8 Operational Land (OLI) satellite imagery surface reflectance (SR) products facilitate monitoring reservoir CHL-a, SD, TSS using Google Earth Engine (GEE) platform machine learning Machine models were trained OLI MSI identify bands combinations predicting TSS. Among algorithms tested, random forest (RF) (S-2 MSI: R2 = 0.61, mean absolute error [MAE] 6.56%, root-mean-square [RMSE] 12.51 μg/L, L-8 OLI: 0.56, MAE 8.44%, RMSE 16.01 μg/L) yielded best results test set for CHL-a prediction from OLI, outperforming k-nearest neighbor (KNN), AdaBoost, artificial neural network (ANN) models. It also showed superior performance SD prediction. feature importance analysis revealed specific band ratios, (red/red edge1)*red edge2 red/blue significant predictors ratio green highly predictive respectively. fall predictions varying trophic levels reservoirs. indicated 2% reservoirs oligotrophic, while 46%, 43%, 9% mesotrophic, eutrophic, hypertrophic, Meanwhile, 51% 6%, 35%, 8% Overall, demonstrates effectiveness estimating parameters This approach potential yield valuable insights aiding assessment management at regional, national, global levels.
Язык: Английский
Процитировано
20The Science of The Total Environment, Год журнала: 2024, Номер 915, С. 169819 - 169819
Опубликована: Янв. 6, 2024
Язык: Английский
Процитировано
19Environmental Science & Technology, Год журнала: 2025, Номер unknown
Опубликована: Янв. 16, 2025
Accurate prediction of chlorophyll-a (Chl-a) concentrations, a key indicator eutrophication, is essential for the sustainable management lake ecosystems. This study evaluated performance Kolmogorov-Arnold Networks (KANs) along with three neural network models (MLP-NN, LSTM, and GRU) traditional machine learning tools (RF, SVR, GPR) predicting time-series Chl-a concentrations in large lakes. Monthly remote-sensed data derived from Aqua-MODIS spanning September 2002 to April 2024 were used. The based on their forecasting capabilities March August 2024. KAN consistently outperformed others both test forecast (unseen data) phases demonstrated superior accuracy capturing trends, dynamic fluctuations, peak concentrations. Statistical evaluation using ranking metrics critical difference diagrams confirmed KAN's robust across diverse sites, further emphasizing its predictive power. Our findings suggest that KAN, which leverages KA representation theorem, offers improved handling nonlinearity long-term dependencies data, outperforming grounded universal approximation theorem algorithms.
Язык: Английский
Процитировано
13Water Research, Год журнала: 2020, Номер 187, С. 116437 - 116437
Опубликована: Сен. 19, 2020
Язык: Английский
Процитировано
105