The Brain Computes Dynamic Facial Movements for Emotion Categorization Using a Third Pathway DOI Creative Commons
Yuening Yan, Jiayu Zhan,

Oliver Garrod

и другие.

bioRxiv (Cold Spring Harbor Laboratory), Год журнала: 2024, Номер unknown

Опубликована: Май 8, 2024

Abstract Recent theories suggest a new brain pathway dedicated to processing social movement is involved in understanding emotions from biological motion, beyond the well-known ventral and dorsal pathways. However, how this functions as network that computes dynamic motion signals for perceptual behavior unchartered. Here, we used generative model of important facial movements participants (N = 10) categorized “happy,” “surprise,” “fear,” “anger,” “disgust,” “sad” while recorded their MEG responses. Using representational interaction measures (between features, t source, behavioral responses), reveal per participant functional extending occipital cortex superior temporal gyrus. Its sources selectively represent, communicate compose disambiguate emotion categorization behavior, swiftly filters out task-irrelevant identity-defining face shape features. Our findings complex categorize individual participants.

Язык: Английский

Tasks and their role in visual neuroscience DOI Creative Commons
Kendrick Kay, Kathryn Bonnen, Rachel N. Denison

и другие.

Neuron, Год журнала: 2023, Номер 111(11), С. 1697 - 1713

Опубликована: Апрель 10, 2023

Язык: Английский

Процитировано

30

Using deep neural networks to disentangle visual and semantic information in human perception and memory DOI
Adva Shoham, Idan Grosbard, Or Patashnik

и другие.

Nature Human Behaviour, Год журнала: 2024, Номер 8(4), С. 702 - 717

Опубликована: Фев. 8, 2024

Язык: Английский

Процитировано

10

A large and rich EEG dataset for modeling human visual object recognition DOI
Alessandro T. Gifford, Kshitij Dwivedi, Gemma Roig

и другие.

NeuroImage, Год журнала: 2022, Номер 264, С. 119754 - 119754

Опубликована: Ноя. 15, 2022

Язык: Английский

Процитировано

38

Improved region proposal network for enhanced few-shot object detection DOI
Zeyu Shangguan, Mohammad Rostami

Neural Networks, Год журнала: 2024, Номер 180, С. 106699 - 106699

Опубликована: Сен. 3, 2024

Язык: Английский

Процитировано

6

Advancing Naturalistic Affective Science with Deep Learning DOI
Chujun Lin,

Landry S. Bulls,

Lindsey J. Tepfer

и другие.

Affective Science, Год журнала: 2023, Номер 4(3), С. 550 - 562

Опубликована: Авг. 25, 2023

Язык: Английский

Процитировано

14

Simulation of Spatial and Temporal Distribution of Forest Carbon Stocks in Long Time Series—Based on Remote Sensing and Deep Learning DOI Open Access
Xiaoyong Zhang, Weiwei Jia, Yuman Sun

и другие.

Forests, Год журнала: 2023, Номер 14(3), С. 483 - 483

Опубликована: Фев. 27, 2023

Due to the complexity and difficulty of forest resource ground surveys, remote-sensing-based methods assess resources effectively plan management measures are particularly important, as they provide effective means explore changes in over long time periods. The objective this study was monitor spatiotemporal trends wood carbon stocks standing forests southeastern Xiaoxinganling Mountains by using Landsat remote sensing data collected between 1989 2021. Various indicators for predicting were constructed based on Google Earth Engine (GEE) platform. We initially used a multiple linear regression model, deep neural network model convolutional exploring stocks. Finally, we chose because it provided more robust predictions stock pixel-by-pixel basis hence mapping spatial distribution variable. Savitzky–Golay filter smoothing applied predicted annual average observe overall trend, autocorrelation analysis conducted. Sen’s slope Mann–Kendall statistical test It found that 59.5% area showed an increasing while 40.5% decreasing trend past 33 years, future development plotted combining results with Hurst exponent.

Язык: Английский

Процитировано

12

Pre-frontal cortex guides dimension-reducing transformations in the occipito-ventral pathway for categorization behaviors DOI Creative Commons
Yaocong Duan, Jiayu Zhan, Joachim Groß

и другие.

Current Biology, Год журнала: 2024, Номер 34(15), С. 3392 - 3404.e5

Опубликована: Июль 18, 2024

Highlights•Occipital cortex represents both task-relevant and irrelevant features before 120 ms•Only advance to the temporal region•During 121–150 ms, occipital representations reduce lower-dimensional manifolds•These manifolds then transform into from 161 350 msSummaryTo interpret our surroundings, brain uses a visual categorization process. Current theories models suggest that this process comprises hierarchy of different computations transforms complex, high-dimensional inputs (i.e., manifolds) in support multiple behaviors. Here, we tested hypothesis by analyzing these transformations reflected dynamic MEG source activity while individual participants actively categorized same stimuli according tasks: face expression, gender, pedestrian vehicle type. Results reveal three transformation stages guided pre-frontal cortex. At stage 1 (high-dimensional, 50–120 ms), sources represent task-irrelevant stimulus features; higher ventral/dorsal regions, whereas halt at occipital-temporal junction. 2 (121–150 feature manifolds, which underlying behavior over 3 (161–350 ms). Our findings shed light on how brain's network mechanisms specific behaviors.Graphical abstract

Язык: Английский

Процитировано

4

High-level Visual Processing in the Lateral Geniculate Nucleus Revealed using Goal-driven Deep Learning DOI

Mai Gamal,

Seif Eldawlatly

Journal of Neuroscience Methods, Год журнала: 2025, Номер unknown, С. 110429 - 110429

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Computational reconstruction of mental representations using human behavior DOI Creative Commons
Laurent Caplette, Nicholas B. Turk‐Browne

Nature Communications, Год журнала: 2024, Номер 15(1)

Опубликована: Май 17, 2024

Revealing how the mind represents information is a longstanding goal of cognitive science. However, there currently no framework for reconstructing broad range mental representations that humans possess. Here, we ask participants to indicate what they perceive in images made random visual features deep neural network. We then infer associations between semantic their responses and images. This allows us reconstruct multiple concepts, both those supplied by other concepts extrapolated from same space. validate these reconstructions separate further generalize our approach predict behavior new stimuli task. Finally, individual observers enables large-scale investigation conceptual representations.

Язык: Английский

Процитировано

3

Effective ensemble based intrusion detection and energy efficient load balancing using sunflower optimization in distributed wireless sensor network DOI

V. S. Prasanth,

A. Mary Posonia,

A. Parveen Akhther

и другие.

Multimedia Systems, Год журнала: 2024, Номер 30(4)

Опубликована: Июль 29, 2024

Язык: Английский

Процитировано

3