Multimodal Cross-Scale Context Clusters for Classification of Mental Disorders Using Functional and Structural MRI DOI
Shuqi Yang, Qing Lan, Lijuan Zhang

и другие.

Neural Networks, Год журнала: 2025, Номер unknown, С. 107209 - 107209

Опубликована: Янв. 1, 2025

Язык: Английский

Personalised virtual brain models in epilepsy DOI Creative Commons
Viktor Jirsa, Huifang Wang, Paul Triebkorn

и другие.

The Lancet Neurology, Год журнала: 2023, Номер 22(5), С. 443 - 454

Опубликована: Март 24, 2023

Язык: Английский

Процитировано

81

The Computational Theory of Mind DOI

Matteo Colombo,

Gualtiero Piccinini

Опубликована: Ноя. 13, 2023

The Computational Theory of Mind says that the mind is a computing system. It has long history going back to idea thought kind computation. Its modern incarnation relies on analogies with contemporary technology and use computational models. comes in many versions, some more plausible than others. This Element supports theory primarily by its contribution solving mind-body problem, ability explain mental phenomena, success modelling artificial intelligence. To be turned into an adequate theory, it needs made compatible tractability cognition, situatedness dynamical aspects mind, way brain works, intentionality, consciousness.

Язык: Английский

Процитировано

76

Virtual brain twins: from basic neuroscience to clinical use DOI Creative Commons
Huifang Wang, Paul Triebkorn, Martin Breyton

и другие.

National Science Review, Год журнала: 2024, Номер 11(5)

Опубликована: Фев. 27, 2024

ABSTRACT Virtual brain twins are personalized, generative and adaptive models based on data from an individual’s for scientific clinical use. After a description of the key elements virtual twins, we present standard model personalized whole-brain network models. The personalization is accomplished using subject’s imaging by three means: (1) assemble cortical subcortical areas in subject-specific space; (2) directly map connectivity into models, which can be generalized to other parameters; (3) estimate relevant parameters through inversion, typically probabilistic machine learning. We use healthy ageing five diseases: epilepsy, Alzheimer’s disease, multiple sclerosis, Parkinson’s disease psychiatric disorders. Specifically, introduce spatial masks demonstrate their physiological pathophysiological hypotheses. Finally, pinpoint challenges future directions.

Язык: Английский

Процитировано

24

Neural interfaces: Bridging the brain to the world beyond healthcare DOI Creative Commons
Shumao Xu,

Yang Liu,

Hyun‐Jin Lee

и другие.

Exploration, Год журнала: 2024, Номер 4(5)

Опубликована: Март 14, 2024

Abstract Neural interfaces, emerging at the intersection of neurotechnology and urban planning, promise to transform how we interact with our surroundings communicate. By recording decoding neural signals, these interfaces facilitate direct connections between brain external devices, enabling seamless information exchange shared experiences. Nevertheless, their development is challenged by complexities in materials science, electrochemistry, algorithmic design. Electrophysiological crosstalk mismatch electrode rigidity tissue flexibility further complicate signal fidelity biocompatibility. Recent closed‐loop brain‐computer while promising for mood regulation cognitive enhancement, are limited accuracy adaptability user interfaces. This perspective outlines challenges discusses progress contrasting non‐invasive invasive approaches, explores dynamics stimulation interfacing. Emphasis placed on applications beyond healthcare, highlighting need implantable high‐resolution capabilities.

Язык: Английский

Процитировано

21

Multi-timescale neural dynamics for multisensory integration DOI
Daniel Senkowski, Andreas K. Engel

Nature reviews. Neuroscience, Год журнала: 2024, Номер 25(9), С. 625 - 642

Опубликована: Авг. 1, 2024

Язык: Английский

Процитировано

19

Data-driven multiscale computational models of cortical and subcortical regions DOI
Srikanth Ramaswamy

Current Opinion in Neurobiology, Год журнала: 2024, Номер 85, С. 102842 - 102842

Опубликована: Фев. 5, 2024

Язык: Английский

Процитировано

16

Learning how network structure shapes decision-making for bio-inspired computing DOI Creative Commons
Michael Schirner, Gustavo Deco, Petra Ritter

и другие.

Nature Communications, Год журнала: 2023, Номер 14(1)

Опубликована: Май 23, 2023

Abstract To better understand how network structure shapes intelligent behavior, we developed a learning algorithm that used to build personalized brain models for 650 Human Connectome Project participants. We found participants with higher intelligence scores took more time solve difficult problems, and slower solvers had average functional connectivity. With simulations identified mechanistic link between connectivity, intelligence, processing speed synchrony trading accuracy in dependence of excitation-inhibition balance. Reduced led decision-making circuits quickly jump conclusions, while allowed integration evidence robust working memory. Strict tests were applied ensure reproducibility generality the obtained results. Here, identify links function enable learn connectome topology from noninvasive recordings map it inter-individual differences suggesting broad utility research clinical applications.

Язык: Английский

Процитировано

26

Brain-Inspired Computing: A Systematic Survey and Future Trends DOI
Guoqi Li, Lei Deng, Huajin Tang

и другие.

Proceedings of the IEEE, Год журнала: 2024, Номер 112(6), С. 544 - 584

Опубликована: Июнь 1, 2024

Язык: Английский

Процитировано

13

New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment DOI Creative Commons
Pawan Faris, Doris Pischedda, Fulvia Palesi

и другие.

Frontiers in Cellular Neuroscience, Год журнала: 2024, Номер 18

Опубликована: Май 10, 2024

Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of cerebellum in SZ physiopathology, particularly Cognitive Impairment Associated (CIAS). Besides its role motor learning and control, implicated cognition emotion. Recent suggests that structural functional changes are linked to deficits various domains including attention, working memory, decision-making. Moreover, cerebellar dysfunction related altered circuit activities connectivity brain regions processing. This review delves into CIAS. We initially consider major alterations CIAS, addressing impairments neurotransmitter systems, synaptic plasticity, connectivity. then focus recent findings showing several mechanisms also communication impaired. evidence implicates as key component circuits underpinning CIAS physiopathology. Further studies warranted might open new perspectives toward understanding physiopathology effective treatment these disorders.

Язык: Английский

Процитировано

9

Personalized modeling of Alzheimer's disease progression estimates neurodegeneration severity from EEG recordings DOI Creative Commons

Lorenzo Gaetano Amato,

Alberto Arturo Vergani, Michael Lassi

и другие.

Alzheimer s & Dementia Diagnosis Assessment & Disease Monitoring, Год журнала: 2024, Номер 16(1)

Опубликована: Янв. 1, 2024

Early identification of Alzheimer's disease (AD) is necessary for a timely onset therapeutic care. However, cortical structural alterations associated with AD are difficult to discern.

Язык: Английский

Процитировано

8