Object
monitoring
and
surveillance
technologies
are
crucial
in
defense,
border
protection,
counter-terrorism
operations.
These
enable
military
security
personnel
to
monitor
track
the
movement
of
objects
individuals
high-risk
areas,
detect
potential
threats,
respond
effectively
intrusions
or
attacks.
In
object
used
see
troop
movements,
enemy
activities,
provide
real-time
intelligence
commanders.
include
radar
systems,
unmanned
aerial
vehicles
(UAVs),
satellite
imagery.
By
providing
early
warning
movements
these
help
quickly
effectively,
increasing
their
chances
success.
illegal
crossings,
drug
trafficking,
smuggling
activities.
thermal
imaging
cameras,
ground
sensors,
UAVs.
information
about
control
apprehend
reducing
risk
incursions
other
threats.
operations,
threats
prevent
terrorist
facial
recognition
biometric
scanners,
advanced
systems.
identifying
dangers
before
they
can
carry
out
attacks,
activities
safeguard
public.
conclusion,
critical
enabling
national
protect
citizens
from
harm.
ISPRS International Journal of Geo-Information,
Journal Year:
2022,
Volume and Issue:
11(7), P. 385 - 385
Published: July 11, 2022
GeoAI,
or
geospatial
artificial
intelligence,
has
become
a
trending
topic
and
the
frontier
for
spatial
analytics
in
Geography.
Although
much
progress
been
made
exploring
integration
of
AI
Geography,
there
is
yet
no
clear
definition
its
scope
research,
broad
discussion
how
it
enables
new
ways
problem
solving
across
social
environmental
sciences.
This
paper
provides
comprehensive
overview
GeoAI
research
used
large-scale
image
analysis,
methodological
foundation,
most
recent
applications,
comparative
advantages
over
traditional
methods.
We
organize
this
review
according
to
different
kinds
structured
data,
including
satellite
drone
images,
street
views,
geo-scientific
as
well
their
applications
variety
analysis
machine
vision
tasks.
While
tend
use
diverse
types
data
models,
we
summarized
six
major
strengths
(1)
enablement
analytics;
(2)
automation;
(3)
high
accuracy;
(4)
sensitivity
detecting
subtle
changes;
(5)
tolerance
noise
data;
(6)
rapid
technological
advancement.
As
remains
rapidly
evolving
field,
also
describe
current
knowledge
gaps
discuss
future
directions.
Remote Sensing,
Journal Year:
2022,
Volume and Issue:
14(3), P. 516 - 516
Published: Jan. 21, 2022
For
remote
sensing
object
detection,
fusing
the
optimal
feature
information
automatically
and
overcoming
sensitivity
to
adapt
multi-scale
objects
remains
a
significant
challenge
for
existing
convolutional
neural
networks.
Given
this,
we
develop
network
model
with
an
adaptive
attention
fusion
mechanism
(AAFM).
The
is
proposed
based
on
backbone
of
EfficientDet.
Firstly,
according
characteristics
distribution
in
datasets,
stitcher
applied
make
one
image
containing
various
scales.
Such
process
can
effectively
balance
proportion
handle
scale-variable
properties.
In
addition,
inspired
by
channel
attention,
spatial
also
introduced
construction
mechanism.
this
mechanism,
semantic
different
maps
obtained
via
convolution
pooling
operations.
Then,
parallel
are
fused
proportions
factors
get
further
representative
information.
Finally,
Complete
Intersection
over
Union
(CIoU)
loss
used
bounding
box
better
cover
ground
truth.
experimental
results
optical
dataset
DIOR
demonstrate
that,
compared
state-of-the-art
detectors
such
as
Single
Shot
multibox
Detector
(SSD),
You
Only
Look
Once
(YOLO)
v4,
EfficientDet,
module
improves
accuracy
has
stronger
robustness.
PeerJ Computer Science,
Journal Year:
2023,
Volume and Issue:
9, P. e1262 - e1262
Published: March 10, 2023
The
accuracy
of
fish
farming
and
real-time
monitoring
are
essential
to
the
development
"intelligent"
farming.
Although
existing
instance
segmentation
networks
(such
as
Maskrcnn)
can
detect
segment
fish,
most
them
not
effective
in
monitoring.
In
order
improve
image
promote
accurate
intelligent
industry,
this
article
uses
YOLOv5
backbone
network
object
detection
branch,
combined
with
semantic
head
for
segmentation.
experiments
show
that
precision
reach
95.4%
98.5%
algorithm
structure
proposed
article,
based
on
golden
crucian
carp
dataset,
116.6
FPS
be
achieved
RTX3060.
On
publicly
available
dataset
PASCAL
VOC
2007,
is
73.8%,
84.3%,
speed
up
120
Machine Learning and Knowledge Extraction,
Journal Year:
2023,
Volume and Issue:
5(3), P. 891 - 921
Published: Aug. 2, 2023
Numerous
advancements
in
various
fields,
including
pattern
recognition
and
image
classification,
have
been
made
thanks
to
modern
computer
vision
machine
learning
methods.
The
capsule
network
is
one
of
the
advanced
algorithms
that
encodes
features
based
on
their
hierarchical
relationships.
Basically,
a
type
neural
performs
inverse
graphics
represent
object
different
parts
view
existing
relationship
between
these
parts,
unlike
CNNs,
which
lose
most
evidence
related
spatial
location
requires
lots
training
data.
So,
we
present
comparative
review
architectures
used
applications.
paper’s
main
contribution
it
summarizes
explains
significant
current
published
with
advantages,
limitations,
modifications,
IEEE Access,
Journal Year:
2023,
Volume and Issue:
11, P. 114322 - 114340
Published: Jan. 1, 2023
Access
control
to
patient
information
has
become
increasingly
important
in
healthcare
systems.
It
is
vital
enhance
the
security
of
systems
avoid
data
loss
despite
various
policies
imposed
by
management.
The
issue
needs
be
resolved
with
a
comprehensive
secure
framework,
which
allows
users
access
according
their
level
confidentiality.
This
article
presents
solution
imposing
multi-level
e-health
integrating
Lattice-Based
Control
(LBAC)
model
and
blockchain-based
smart
contract
mechanisms.
These
mechanisms
provide
levels
compliance
restrictions
among
resources
while
maintaining
levels.
By
using
LBAC,
you
can
multilevel
protection
for
restrictions,
whereas
contracts
are
used
ensure
transaction
process
decentralized
system
via
an
agreement
between
parties.
A
validates
every
user
performs
authentication
envisioned
model,
uses
Ethereum
Virtual
Machine
(EVM).
In
blockchain
network,
patient's
details
accessed
stored
as
immutable
blocks.
Comparing
proposed
scheme
existing
benchmarking
methods
reveals
that
preserves
privacy,
maintains
transparency,
provides
process,
integrity,
security.
better
than
other
models.
As
result,
lattice-based
enhances
records.
Advanced Optical Materials,
Journal Year:
2024,
Volume and Issue:
12(19)
Published: April 27, 2024
Abstract
Neuromorphic
devices
that
parallelize
perception,
preprocessing,
and
computation
functions
are
expected
to
play
a
significant
role
in
future
non‐von
Neumann
architecture
computers.
Herein,
new
retina‐inspired
broadband
self‐powered
optoelectronic
synaptic
device
based
on
2D/3D
heterojunction
of
epitaxial
InSe
GaN(0001)
is
reported.
Few‐layer
n‐type
grown
p‐type
GaN
by
physical
vapor
deposition
an
ultra‐high
vacuum
(UHV)
environment.
The
fabricated
using
shadow
mask
assisted
UHV
electrode
technique.
High‐resolution
transmission
electron
microscopy
images
reveal
atomically
thin
amorphous
layer,
which
induces
highly
efficient
charge
trapping,
formed
at
the
InSe/GaN
interface.
photoresponse
spans
from
visible
near‐infrared,
response
time
prolonged
10
3
ms
owing
deep
trapping
levels.
Thus,
functions,
including
excitatory
postsynaptic
current,
paired‐pulse
facilitation
with
high
index
up
170%,
short‐term
plasticity,
high‐pass
filtering
characteristics,
realized.
Additionally,
synapses
demonstrated
merit
realizing
image
sharpening
arithmetic
operations
same
under
infrared
light
illumination.
This
study
provides
platform
heterostructures
for
robust
may
find
applications
post‐Moore
era
neuromorphic
vision
systems.
IEEE Access,
Journal Year:
2023,
Volume and Issue:
11, P. 107309 - 107330
Published: Jan. 1, 2023
Blockchain
(BC)
and
Computer
Vision
(CV)
are
the
two
emerging
fields
with
potential
to
transform
various
sectors.
BC
can
offer
decentralized
secure
data
storage,
while
CV
allows
machines
learn
understand
visual
data.
The
integration
of
technologies
holds
massive
promise
for
developing
innovative
applications
that
provide
solutions
challenges
in
sectors
such
as
supply
chain
management,
healthcare,
smart
cities,
defense.
This
review
explores
a
comprehensive
analysis
by
examining
their
combination
applications.
It
also
provides
detailed
fundamental
concepts
both
technologies,
highlighting
strengths
limitations.
paper
current
research
efforts
make
use
benefits
offered
this
combination.
be
used
an
added
layer
security
systems
ensure
integrity,
enabling
image
video
analytics.
open
issues
associated
identified,
appropriate
future
directions
proposed.
Scientific Bulletin of UNFU,
Journal Year:
2025,
Volume and Issue:
35(1), P. 137 - 148
Published: March 6, 2025
Розпізнавання
об'єктів
у
режимі
реального
часу
є
ключовим
елементом
сучасного
комп'ютерного
зору,
особливо
в
складних
сценаріях
їх
отримання,
таких
як
військові
операції,
де
швидкість
і
точність
виявлення
цільових
критично
важливими
для
успішної
навігації
динамічних
непередбачуваних
умовах
поля
бою.
У
цьому
дослідженні
проаналізовано
проблему
та
класифікації
військових
часу.
Навчено
налаштовано
три
моделі
об'єктів:
Faster
R-CNN
(англ.
Region-based
Convolutional
Neural
Networks),
SSD
Single
Shot
MultiBox
Detector)
YOLO
You
Look
Only
Once).
Досліджено
продуктивність
двоетапних
одноетапних
алгоритмів
й
оцінено
придатність
моделей
оперативного
розгортання
середовищах.
Розроблено
спеціалізований
набір
даних,
що
містить
різноманітні
зображення
бронетехніки
(танків,
бойових
машин
піхоти
бронетранспортерів)
адаптований
навчання,
валідації
тестування
реальних
умовах.
Оцінено
навчених
за
ключовими
показниками:
точність,
влучність,
F1-міра,
середня
частота
кадрів.
Застосовано
платформу
NVIDIA
Jetson
продуктивності
умов
обмежених
обчислювальних
ресурсів.
Встановлено,
модель
YOLOv8n
найефективнішою,
досягнувши
найвищих
значень
mAP
(91,8
%)
FPS
(55),
підтверджує
її
вирішення
завдань
розпізнавання
зображень
Водночас,
разом
із
залишковою
нейронною
мережею
ResNet50
Residual
Network)
забезпечила
належну
(mAP
–
89,2
%,
F1-Score
89,4
%),
однак
низька
оброблення
вхідних
кадрів
(FPS
7)
значно
обмежує
використання
оперативних
сценаріях.
Модель
з
легкою
згортковою
MobileNetV3
продемонструвала
збалансовані
результати
81
83,4
36),
пропонуючи
компроміс
між
точністю
швидкістю,
проте
поступається
загальною
ефективністю
через
випадки
хибної
або
пропуску
об'єктів.
Вказано
на
практичну
значущість
вибору
адаптації
відповідно
до
конкретних
потреб,
зокрема
військовій
сфері.
Отримані
слугують
основою
подальших
досліджень,
спрямованих
вдосконалення
часу,
розширення
набору
удосконалення
сучасних
методів
підвищення
периферійних
пристроїв