Monitoring Soil Salinity in Arid Areas of Northern Xinjiang Using Multi-Source Satellite Data: A Trusted Deep Learning Framework
Mengli Zhang,
No information about this author
Xianglong Fan,
No information about this author
Pan Gao
No information about this author
et al.
Land,
Journal Year:
2025,
Volume and Issue:
14(1), P. 110 - 110
Published: Jan. 8, 2025
Soil
salinization
affects
agricultural
productivity
and
ecosystem
health
in
Xinjiang,
especially
arid
areas.
The
region’s
complex
topography
limited
data
emphasize
the
pressing
need
for
effective,
large-scale
monitoring
technologies.
Therefore,
1044
soil
samples
were
collected
from
farmland
northern
potential
effectiveness
of
salinity
was
explored
by
combining
environmental
variables
with
Landsat
8
Sentinel-2.
study
applied
four
types
feature
selection
algorithms:
Random
Forest
(RF),
Competitive
Adaptive
Reweighted
Sampling
(CARS),
Uninformative
Variable
Elimination
(UVE),
Successive
Projections
Algorithm
(SPA).
These
are
then
integrated
into
various
machine
learning
models—such
as
Ensemble
Tree
(ETree),
Extreme
Gradient
Boosting
(XGBoost),
LightBoost—as
well
deep
models,
including
Convolutional
Neural
Networks
(CNN),
Residual
(ResNet),
Multilayer
Perceptrons
(MLP),
Kolmogorov–Arnold
(KAN),
modeling.
results
suggest
that
fertilizer
use
plays
a
critical
role
processes.
Notably,
interpretable
model
KAN
achieved
an
accuracy
0.75
correctly
classifying
degree
salinity.
This
highlights
integrating
multi-source
remote
sensing
technologies,
offering
pathway
to
monitoring,
thereby
providing
valuable
support
management.
Language: Английский
Digital mapping of soil salinity with time-windows features optimization and ensemble learning model
Ecological Informatics,
Journal Year:
2024,
Volume and Issue:
unknown, P. 102982 - 102982
Published: Dec. 1, 2024
Language: Английский
Exploring Rangeland Dynamics in Punjab, Pakistan: Integrating LULC, LST, and Remote Sensing for Ecosystem Analysis (2000–2020)
Rangeland Ecology & Management,
Journal Year:
2024,
Volume and Issue:
unknown
Published: Oct. 1, 2024
Language: Английский
Retrievaling Soil Salinity Based on Optimal Temporal Remote Sensing Derived from Effects of Salt-Alkalia Soil on Crop Stress
Hui Xiao,
No information about this author
Hongtao Cao,
No information about this author
Kun Chen
No information about this author
et al.
Published: Jan. 1, 2024
Language: Английский
Effects of salt content and particle size on spectral reflectance and model accuracy: Estimating soil salt content in arid, saline-alkali lands
Microchemical Journal,
Journal Year:
2024,
Volume and Issue:
unknown, P. 111666 - 111666
Published: Sept. 1, 2024
Language: Английский
Remote Sensing-Based Earth Climate Detection in Geoscience Model with Artificial Intelligence Application
Remote Sensing in Earth Systems Sciences,
Journal Year:
2024,
Volume and Issue:
7(4), P. 569 - 581
Published: Oct. 8, 2024
Language: Английский
Digital mapping of soil properties using geomatics: integration of GIS, GPS, and remote sensing applications
Arabian Journal of Geosciences,
Journal Year:
2024,
Volume and Issue:
17(12)
Published: Dec. 1, 2024
Language: Английский
Aplicaciones de la inteligencia artificial en el monitoreo y conservación ambiental: una revisión exploratoria
REVISTA AMBIENTAL AGUA AIRE Y SUELO,
Journal Year:
2024,
Volume and Issue:
15(2), P. 48 - 68
Published: Sept. 27, 2024
Este
artículo
explora
el
uso
de
la
inteligencia
artificial
en
vigilancia
y
preservación
del
agua,
aire
suelo.
El
análisis
examinó
estudios
revisador
por
pares
publicados
entre
2020
2024,
con
un
enfoque
específico
contribución
a
mejora
las
técnicas
gestión
ambiental.
procedimiento
selección
se
limitó
treinta
tres
investigaciones
pertinentes,
que
clasificaron
dominios
principales,
calidad
suelo,
contaminación
monitoreo
ambiental,
aplicaciones
IA.
Las
artificial,
incluido
aprendizaje
automático
profundo,
muestran
gran
potencial
para
mejorar
precisión
predicciones
optimizar
asignación
recursos
varios
campos
ambientales.
Los
usos
principales
esta
tecnología
son
evaluar
predecir
los
niveles
gestionar
hídricos.
La
integración
IA
métodos
convencionales
eficacia
Sin
embargo,
existen
dificultades
continuas
garantizar
confiabilidad
datos,
capacidad
modelos
aplicarse
diferentes
escenarios
exitosa
estos
diversas
situaciones.
ha
demostrado
su
generar
cambios
significativos
conservación
medio
ambiente.
posteriores
deberían
dar
prioridad
ampliación
conjuntos
incorporación
tecnologías
desarrollo
resolución
consecuencias
socioeconómicas,
fin
aprovechar
al
máximo
abordar
cuestiones
ambientales
complejas.