Procedia Computer Science, Journal Year: 2024, Volume and Issue: 246, P. 2539 - 2548
Published: Jan. 1, 2024
Language: Английский
Procedia Computer Science, Journal Year: 2024, Volume and Issue: 246, P. 2539 - 2548
Published: Jan. 1, 2024
Language: Английский
Intelligent systems reference library, Journal Year: 2025, Volume and Issue: unknown, P. 25 - 62
Published: Jan. 1, 2025
Language: Английский
Citations
0Engineering Applications of Artificial Intelligence, Journal Year: 2025, Volume and Issue: 147, P. 110396 - 110396
Published: Feb. 26, 2025
Language: Английский
Citations
0AI & Society, Journal Year: 2025, Volume and Issue: unknown
Published: May 3, 2025
Language: Английский
Citations
0Emerging Trends in Drugs Addictions and Health, Journal Year: 2025, Volume and Issue: unknown, P. 100171 - 100171
Published: Feb. 1, 2025
Language: Английский
Citations
0Intelligent Decision Technologies, Journal Year: 2025, Volume and Issue: unknown
Published: Feb. 24, 2025
Generative AI (GenAI) technologies are examined through the lens of issues and trends related to decision making. After examining foundations technology particularly large language models (LLM), opportunities for GenAI be used in decision-making process intelligence, design, choice implementation explored. With its ability rapidly generate insights, present optimized solutions, provide detailed analysis given input, has demonstrated that it can assist augment human Although systems have potential transform content creation cognition, they also raise around accuracy, misinformation, ethics, bias, morality, social impacts, privacy, copyright, legality, explainability, among others. Addressing these challenges is important maximize efficacy
Language: Английский
Citations
0BMC Medical Education, Journal Year: 2025, Volume and Issue: 25(1)
Published: April 17, 2025
Abstract Background With the integration of Artificial Intelligence (AI) into educational systems, its potential to revolutionize learning, particularly in content personalization and assessment support, is significant. Personalized supported by AI tools, can adapt individual learning styles needs, thus transforming how medical students approach their studies. This study aims explore relationship between use for self-directed among undergraduate UK variables such as year study, gender, age. Methods cross-sectional involved a sample 230 from universities, collected through an online survey. The survey assessed usage including students’ attitudes towards accuracy, perceived benefits, willingness mitigate misinformation. Data were analyzed using descriptive statistics linear logistic regression examine associations demographics. Results analysis revealed that age significantly influenced pay tools ( p = 0.012) gender was linked concerns about inaccuracies 0.017). Female more likely take steps risks misinformation 0.045). also found variability based on with first-year showing higher reliance tools. Conclusion has greatly enhance personalized students. However, issues surrounding misinformation, equitable access need be addressed optimize education. Further research recommended longitudinal effects outcomes.
Language: Английский
Citations
0Sustainability, Journal Year: 2024, Volume and Issue: 16(11), P. 4686 - 4686
Published: May 31, 2024
With the development of e-commerce in Poland, consumer awareness has evolved. Buyers not only compared prices and assessed quality products but also began to take into account impact their purchases on environment, which was previously an overlooked aspect. This growing environmental is part a broader effort address issues support practices that promote sustainability. Currently, there noticeable increase ecological among society, government bodies, scientific community, strengthening human interaction with natural environment. The aim this study examine changes attitudes Polish e-consumers over ten years online shopping behavior. explored how have evolved last decade what these had purchasing behavior consumers. Longitudinal studies were used enable analysis time. research technique based repeated measurements same phenomena features, carried out diverse samples from population, using methods tools. conducted twice, 2010 2020, sample 1150 people each years. employed survey questionnaire, included scales for assessing personality traits determinants shopping. A significant change found e-consumers’ towards environment preferences. clear behavior, including importance convenience, access detailed product information, wide range offered, reflecting more conscious convenience-oriented
Language: Английский
Citations
2Frontiers in Robotics and AI, Journal Year: 2024, Volume and Issue: 11
Published: July 22, 2024
Safefy-critical
domains
often
employ
autonomous
agents
which
follow
a
sequential
decision-making
setup,
whereby
the
agent
follows
policy
to
dictate
appropriate
action
at
each
step.
AI-practitioners
reinforcement
learning
algorithms
allow
an
find
best
policy.
However,
systems
lack
clear
and
immediate
signs
of
wrong
actions,
with
consequences
visible
only
in
hindsight,
making
it
difficult
humans
understand
system
failure.
In
learning,
this
is
referred
as
credit
assignment
problem.
To
effectively
collaborate
system,
particularly
safety-critical
setting,
explanations
should
enable
user
better
predict
behavior
so
that
users
are
cognizant
potential
failures
these
can
be
diagnosed
mitigated.
diverse
have
innate
biases
or
preferences
may
enhance
impair
utility
explanation
agent.
Therefore,
paper,
we
designed
conducted
human-subjects
experiment
identify
factors
influence
perceived
usability
objective
usefulness
for
setting.
Our
study
had
two
factors:
modality
shown
(Tree,
Text,
Modified
Programs)
“first
impression”
agent,
i.e.,
whether
saw
succeed
fail
introductory
calibration
video.
findings
characterize
preference-performance
tradeoff
wherein
participants
language-based
significantly
more
useable;
however,
were
able
objectively
agent’s
when
provided
form
decision
tree.
results
demonstrate
user-specific
factors,
such
computer
science
experience
(p
Language: Английский
Citations
2Computers & Industrial Engineering, Journal Year: 2024, Volume and Issue: 194, P. 110356 - 110356
Published: Aug. 1, 2024
Language: Английский
Citations
1Batı anadolu eğitim bilimleri dergisi, Journal Year: 2024, Volume and Issue: 15(2), P. 1606 - 1641
Published: Aug. 9, 2024
Bu çalışmanın amacı, Kimya, Fizik, Biyoloji ve Fen Bilimleri öğretmenlerinin derslerinde yapay zekâ kullanımına yönelik görüş tutumları arasındaki ilişkinin Teknoloji Kabul Modeli (TAM) çerçevesinde algılanan kullanım kolaylığı fayda değişkenleri açısından derinlemesine incelenmesidir. Araştırmada karma yöntem kullanılmış olup, nitel veriler yarı yapılandırılmış görüşme formu aracılığıyla, nicel ise “Yapay Zekâya Yönelik Genel Tutum Ölçeği” ile toplanmıştır. Araştırma örneklemini, 2022-2023 yıllarında Türkiye’nin farklı bölgelerinde görev yapan dört branştan 51 öğretmen (25 kadın, 26 erkek) oluşturmaktadır. Nitel araştırma sonuçlarına göre, öğretmenlerin büyük çoğunluğu (%90.2) kullanımını faydalı bulmakta performanslarını artıracağını düşünmektedir (%84.3). Ayrıca, %58.8'i kullanmaktadır. Ancak, kullanmayan öğretmenler (%41.2), bu teknolojinin zor yeterli beceriye sahip olmadıklarını düşünmektedir. puan ortalaması 3.58 olarak bulunmuş da zekâya genel tutumlarının yüksek olduğunu göstermektedir. Tutumların cinsiyet değişkeni anlamlı bir ilişkisinin olmadığı belirlenmiştir. Hem hem de verilerden elde edilen sonuçlar, olumlu tutum sergilediklerini, ancak verilerde olumsuz sergileyen uygulamaların kullanımında zorluk yaşadıklarını ortaya koymaktadır. Öğretmenlerin uygulamayı bulsalar dahi, kullanımının kolay durumlarda derslerine entegre etmedikleri görülmektedir. çıkarım, TAM modeli önemli sonuçtur. Öğretmenlere verilecek eğitimlerle uygulamalarının özellikle kimya fizik gibi soyut kavramlar içeren derslerde artırılabileceği önerilmektedir. değerlendirildiğinde, yetiştirme programlarına teknolojilerinin entegrasyonu, araçları daha etkin kullanmalarını eğitim süreçlerinin kalitesini artırmalarını sağlayacaktır.
Citations
1