Journal of Medical Radiation Sciences,
Journal Year:
2024,
Volume and Issue:
unknown
Published: Nov. 7, 2024
The
rapid
advancement
of
technology
has
brought
significant
changes
to
various
fields,
including
medical
imaging
(MI).
This
discussion
paper
explores
the
integration
computing
technologies
(e.g.
Python
and
MATLAB),
digital
image
processing
enhancement,
segmentation
three-dimensional
reconstruction)
artificial
intelligence
(AI)
into
undergraduate
MI
curriculum.
By
examining
current
educational
practices,
gaps
limitations
that
hinder
development
future-ready
professionals
are
identified.
A
comprehensive
curriculum
framework
is
proposed,
incorporating
essential
computational
skills,
advanced
techniques
state-of-the-art
AI
tools,
such
as
large
language
models
like
ChatGPT.
proposed
aims
improve
quality
education
significantly
better
equip
students
for
future
professional
practice
challenges
while
enhancing
diagnostic
accuracy,
improving
workflow
efficiency
preparing
evolving
demands
field.
Journal of medical imaging and radiation sciences,
Journal Year:
2024,
Volume and Issue:
55(4), P. 101449 - 101449
Published: July 13, 2024
Artificial
Intelligence
(AI)
is
revolutionizing
medical
imaging
and
radiation
therapy.
AI-powered
applications
are
being
deployed
to
aid
Medical
Radiation
Technologists
(MRTs)
in
clinical
workflows,
decision-making,
dose
optimisation,
a
wide
range
of
other
tasks.
Exploring
the
levels
AI
education
provided
across
United
States
crucial
prepare
future
graduates
deliver
digital
future.
This
study
aims
assess
educators'
knowledge,
current
state
educational
provisions,
perceived
challenges
around
education,
important
factors
for
advancements.
Interactive Technology and Smart Education,
Journal Year:
2024,
Volume and Issue:
21(4), P. 735 - 772
Published: July 13, 2024
Purpose
The
intricate
dynamics
of
ChatGPT
adoption
among
Indian
students
are
discussed
while
exploring
the
factors
outlined
by
Unified
Theory
Acceptance
and
Use
Technology
2
(UTAUT2).
By
assessing
these
factors,
this
study
aims
to
unravel
their
impact
on
behavioral
intention
use
ChatGPT.
Design/methodology/approach
While
evaluating
ChatGPT's
dynamics,
analyses
UTAUT2
core
perceived
benefits.
Real-time
data
from
638
business
management
in
India
were
collected
through
purposive
sampling
a
cross-sectional
survey.
An
in-depth
examination
using
IBM
SPSS
AMOS
revealed
patterns
that
regulate
reception
educational
settings.
Findings
Habit
emerges
as
powerful
predictor,
which
aligns
with
Loop
Theory's
cues,
routine
rewards.
Perceived
benefits
significantly
influence
adoption,
traditional
like
performance
expectancy
social
exert
no
influence.
insignificance
effort
challenges
conventional
understanding,
unveiling
novel
aspects
student
tech
adoption.
Social
implications
There
is
need
for
guidelines
ensure
fair
responsible
students.
presents
advantages
task
automation
personalized
learning,
integrating
it
into
existing
education
system
requires
careful
planning
harness
its
effectively.
Originality/value
With
recent
introduction
Generative-AI
tools,
understanding
acceptance
application
essential.
This
research
sheds
light
emerging
technology,
emphasizing
importance
analyzing
technology
successful
Journal of Educational Evaluation for Health Professions,
Journal Year:
2024,
Volume and Issue:
21, P. 29 - 29
Published: Oct. 30, 2024
This
study
investigated
the
performance
of
ChatGPT-4.0o
in
evaluating
quality
positioning
radiographic
images.
Thirty
radiographs
depicting
a
variety
knee,
elbow,
ankle,
hand,
pelvis,
and
shoulder
projections
were
produced
using
anthropomorphic
phantoms
uploaded
to
ChatGPT-4.0o.
The
model
was
prompted
provide
solution
identify
any
errors
with
justification
offer
improvements.
A
panel
radiographers
assessed
solutions
for
based
on
established
criteria,
grading
scale
1–5.
In
only
20%
projections,
correctly
recognized
all
justifications
offered
correct
suggestions
improvement.
most
commonly
occurring
score
3
(9
cases,
30%),
wherein
at
least
1
specific
error
provided
mean
2.9.
Overall,
low
accuracy
demonstrated,
receiving
partially
solutions.
findings
reinforce
importance
robust
radiography
education
clinical
experience.
Diagnostics,
Journal Year:
2025,
Volume and Issue:
15(5), P. 635 - 635
Published: March 6, 2025
Background/Objectives:
This
study
evaluates
ChatGPT
4.0's
ability
to
interpret
thyroid
ultrasound
(US)
reports
using
ACR-TI-RADS
2017
criteria,
comparing
its
performance
with
different
levels
of
US
users.
Methods:
A
team
medical
experts,
an
inexperienced
user,
and
4.0
analyzed
100
fictitious
reports.
ChatGPT's
was
assessed
for
accuracy,
consistency,
diagnostic
recommendations,
including
fine-needle
aspirations
(FNA)
follow-ups.
Results:
demonstrated
substantial
agreement
experts
in
assessing
echogenic
foci,
but
inconsistencies
other
such
as
composition
margins,
were
evident
both
analyses.
Interrater
reliability
between
ranged
from
moderate
almost
perfect,
reflecting
AI's
potential
also
limitations
achieving
expert-level
interpretations.
The
user
outperformed
a
nearly
perfect
the
highlighting
critical
role
traditional
training
standardized
risk
stratification
tools
TI-RADS.
Conclusions:
showed
high
specificity
recommending
FNAs
lower
sensitivity
follow-ups
compared
student.
These
findings
emphasize
supportive
tool
rather
than
replacement
human
expertise.
Enhancing
AI
algorithms
could
improve
clinical
utility,
enabling
better
support
clinicians
managing
nodules
improving
patient
care.
highlights
promise
current
diagnostics,
advocating
refinement
integration
into
workflows.
However,
it
emphasizes
that
must
not
be
compromised,
is
essential
identifying
correcting
AI-driven
errors.
Insight the psychological dimensions of society,
Journal Year:
2024,
Volume and Issue:
11, P. 143 - 163
Published: May 1, 2024
Метою
емпіричного
дослідження
є
з’ясування
та
обґрунтування
психологічних
змістових
параметрів
інноватики
у
професійному
становленні
розвитку
майбутніх
учителів.
Завданнями
є:
визначення
кореляційних
зв’язків
професійної
готовності
здобувачів
до
інноваційної
діяльності
з
незалежними
змінними;
статистично
достовірних
відмінностей
між
досліджуваними
вибірках
бакалаврів
(група
І)
і
магістрантів
ІІ);
порівняння
досліджуваних
груп
високим
низьким
рівнями
сформованості
коефіцієнтів
інноватики.
Методи:
ретроспективне
аналізування,
узагальнення,
систематизація
порівняння;
авторська
анкета
“Професійна
готовність
діяльності”
(ГІД)
(Цюняк,
2021);
методика
“Діагностика
мотиваційної
структури
особистості”
(ДМСО)
(Мільман,
1990);
“Здібності
педагога
творчого
саморозвитку”
(ЗПТС)
(Нікішина,
2009).
Результати.
З’ясовано,
що
вибірками
I)
ІІ)
немає
запропонованих
параметрах.
Позитивну
тенденцію
зафіксовано
групі
I
в
кількісному
коефіцієнті
KKI
(М=.68;
SD=.22;
Me=.68)
ІІ
–
якісному
ЯKI
(М=.62;
SD=.23;
Me=.61).
Встановлено,
коефіцієнти
мають
по
чотири
достовірні
кореляційні
зв’язки
змінними:
творча
активність,
соціальна
корисність,
активний
саморозвиток,
зупинений
саморозвиток
(р<.050;
р<.010).
Констатовано
відмінності
групах
із
кількісного
коефіцієнта
(ККІ)
якісного
(ЯКІ).
Дискусія
висновки.
Пояснено,
наявність
достовірного
зв’язку
ЯКІ
параметром
“соціальна
корисність”
свідченням
того,
досліджувані
готові
нести
соціальну
відповідальність
за
нововведення,
займати
зрілу
позицію
працювати
на
довготривалу
перспективу.
Рекомендовано
отримані
емпіричні
результати
взяти
уваги
організаторам
освітнього
процесу
гарантам
профільних
освітньо-наукових
програм,
які
відповідають
навчально-професійну
підготовку
вчителів.
Journal of medical imaging and radiation sciences,
Journal Year:
2024,
Volume and Issue:
55(4), P. 101426 - 101426
Published: May 25, 2024
BackgroundThe
aim
of
this
study
was
to
describe
the
proficiency
ChatGPT
(GPT-4)
on
certification
style
exams
from
Canadian
Association
Medical
Radiation
Technologists
(CAMRT),
and
its
performance
across
multiple
exam
attempts.MethodsChatGPT
prompted
with
questions
CAMRT
practice
in
disciplines
radiological
technology,
magnetic
resonance
(MRI),
nuclear
medicine
radiation
therapy
(87-98
each).
attempted
each
five
times.
Exam
evaluated
using
descriptive
statistics,
stratified
by
discipline
question
type
(knowledge,
application,
critical
thinking).
Light's
Kappa
used
assess
agreement
answers
attempts.ResultsUsing
a
passing
grade
65
%,
passed
technology
only
once
(20
%),
MRI
all
times
(100
three
(60
%).
ChatGPT's
best
knowledge
except
therapy.
It
performed
worst
thinking
questions.
Agreement
responses
attempts
substantial
within
MRI,
medicine,
almost
perfect
for
therapy.ConclusionChatGPT
able
pass
technologists
therapists,
but
varied
between
disciplines.
The
algorithm
demonstrated
it
provided
attempts.
Future
research
evaluating
standardized
tests
should
consider
repeated
measures.
International Journal of Learning Teaching and Educational Research,
Journal Year:
2024,
Volume and Issue:
23(5), P. 387 - 402
Published: May 30, 2024
Generative
pre-trained
transformers
(ChatGPTs)
have
become
an
increasingly
interesting
topic
in
education,
particularly
student
character
development.
However,
the
use
of
ChatGPT
learning
and
education
faces
significant
challenges.
This
systematic
literature
review
article
utilized
PRISMA
protocol
by
using
current
from
PubMed,
IEEE,
Xplore,
Scopus
2017-2023
that
presents
analysis
challenges,
opportunities,
solutions
related
to
context
education.
The
results
showed
challenges
include
limited
context,
reliance
on
baseline
data,
lack
direct
supervision.
there
were
also
such
as
creativity
designing
scenarios,
scalability
large
amounts
potential
a
personal
assistant
for
students.
Several
proposed
address
these
including
developing
specialized
models,
implementing
filters
or
supervision
mechanisms,
user
Understanding
has
been
essential
harness
full
improving