Biological Psychiatry, Journal Year: 2022, Volume and Issue: 92(9), P. 730 - 738
Published: June 1, 2022
Language: Английский
Biological Psychiatry, Journal Year: 2022, Volume and Issue: 92(9), P. 730 - 738
Published: June 1, 2022
Language: Английский
Trends in Cognitive Sciences, Journal Year: 2020, Volume and Issue: 24(4), P. 302 - 315
Published: Feb. 25, 2020
The emergence of network neuroscience allows researchers to quantify the link between organizational features neuronal networks and spectrum cortical functions.Current models indicate that structure function are significantly correlated, but correspondence is not perfect because reflects complex multisynaptic interactions in structural networks.Function cannot be directly estimated from structure, must inferred by higher-order interactions. Statistical, communication, biophysical have been used translate brain function.Structure–function coupling regionally heterogeneous follows molecular, cytoarchitectonic, functional hierarchies. Structure–function relationships a fundamental principle many naturally occurring systems. However, research suggests there an imperfect connectivity brain. Here, we synthesize current state knowledge linking macroscale discuss different types assess this relationship. We argue do include requisite biological detail completely predict function. Structural reconstructions enriched with local molecular cellular metadata, concert more nuanced representations functions properties, hold great potential for truly multiscale understanding structure–function relationship central concept natural sciences engineering. Consider how conformation protein determines its chemical properties and, ultimately, folding into 3D promotes among amino acids, allowing chemically interact other molecules endowing it Conversely, disruption protein's results loss Tellingly, said denatured, highlighting idea changing has fundamentally altered nervous system analogously shaped arrangement neurons populations. synaptic projections forms hierarchy (see Glossary) nested increasingly polyfunctional neural circuits support perception, cognition, action. Modern imaging technology permits high-throughput reconstruction across spatiotemporal scales species (Box 1). Through extensive international data sharing efforts, detailed system's connection patterns available humans multiple model organisms, including invertebrate [1.Chiang A-S. et al.Three-dimensional brain-wide wiring Drosophila at single-cell resolution.Curr. Biol. 2011; 21: 1-11Abstract Full Text PDF PubMed Scopus (324) Google Scholar], avian [2.Shanahan M. al.Large-scale organization forebrain: matrix theoretical analysis.Front. Comput. Neurosci. 2013; 7: 89Crossref (111) rodent [3.Oh S.W. al.A mesoscale connectome mouse brain.Nature. 2014; 508: 207Crossref (777) Scholar,4.Bota al.Architecture cerebral association underlying cognition.Proc. Natl. Acad. Sci. U.S.A. 2015; 112: E2093-E2101Crossref (90) Scholar, primate [5.Markov N.T. weighted directed interareal macaque cortex.Cereb. Cortex. 2012; 24: 17-36Crossref (272) Scholar,6.Majka P. al.Towards comprehensive atlas connections brain: Mapping tracer injection studies common marmoset reference digital template.J. Com. Neurol. 2016; 524: 2161-2181Crossref (33) Scholar. These diagrams system, termed (SC) or connectomes, represent physical elements [7.Sporns O. al.The human connectome: description brain.PLoS 2005; 1: e42Crossref (1521) Scholar]. offers opportunity articulate functions. SC possess distinctive nonrandom attributes, high clustering short path length, characteristic small-world architecture [8.Watts D.J. Strogatz S.H. Collective dynamics networks.Nature. 1998; 393: 440Crossref (0) Populations similar tend cluster together, forming specialized modules crosslinked hub nodes diverse connectional fingerprints [9.Young M.P. systems cortex.J. Roy. Soc. Lond. B. 1993; 252: 13-18Crossref Scholar,10.Kötter R. al.Connectional characteristics areas Walker's map prefrontal cortex.Neurocomputing. 2001; 38: 741-746Crossref (20) hubs disproportionately interconnected each other, putative core [11.Hagmann al.Mapping cortex.PLoS 2008; 6: e159Crossref (2384) Scholar] 'rich club' [12.van den Heuvel al.High-cost, high-capacity backbone global communication.Proc. 109: 11372-11377Crossref (361) architectural feature potentially signals sampled integrated [13.Zamora-López G. al.Cortical form module multisensory integration on top networks.Front. Neuroinform. 2010; 4: 1PubMed Finally, spatially embedded, finite metabolic material resources [14.Bullmore E. Sporns economy organization.Nat. Rev. 13: 336Crossref (1282) resulting increased prevalence shorter, low-cost [15.Horvát S. al.Spatial embedding cost constrain layout rodents primates.PLoS 14: e1002512Crossref Scholar,16.Roberts J.A. contribution geometry connectome.NeuroImage. 124: 379-393Crossref (60) attributes replicated range tracing techniques, suggesting principles phylogeny [17.Van al.Comparative connectomics.Trends. Cogn. 20: 345-361Abstract (118) imparts distinct signature coactivation patterns. Inter-regional promote signaling synchrony distant populations, giving rise coherent dynamics, measured as regional time series electromagnetic hemodynamic activity. Systematic pairs regions can (FC) networks. Over past decade, these recorded without task instruction stimulation; 'intrinsic' ' resting-state' FC thought reflect spontaneous activity [18.Biswal al.Functional motor cortex resting using echo-planar MRI.Magn. Reson. Med. 1995; 34: 537-541Crossref (5503) Intrinsic highly organized [19.Damoiseaux J. al.Consistent resting-state healthy subjects.Proc. 2006; 103: 13848-13853Crossref (2665) 20.Bellec al.Multi-level bootstrap analysis stable clusters fMRI.NeuroImage. 51: 1126-1139Crossref (170) 21.Thomas Yeo intrinsic connectivity.J. Neurophysiol. 106: 1125-1165Crossref (2040) reproducible [22.Gordon E.M. al.Precision mapping individual brains.Neuron. 2017; 95: 791-807Abstract (140) Scholar,23.Noble decade test-retest reliability connectivity: systematic review meta-analysis.NeuroImage. 2019; : 116157Crossref (5) comparable task-driven [24.Smith S.M. al.Correspondence brain's during activation rest.Proc. 2009; 13040-13045Crossref (2684) Scholar,25.Cole M.W. al.Intrinsic task-evoked architectures brain.Neuron. 83: 238-251Abstract (516) persistent nature rest makes ideal starting point study [26.Honey C.J. al.Can brain?.NeuroImage. 52: 766-776Crossref (291) Scholar,27.Damoiseaux J.S. Greicius M.D. Greater than sum parts: combining connectivity.Brain Struct. Funct. 213: 525-533Crossref Here first show direct one-to-one links limited inherently obscured networked survey modern quantitative methods move away correlations conceptualizing emerging focus strengths, limitations, commonalities. posit next steps network-level take account heterogeneity enriching microscale transcriptomic, neuromodulatory information. close theories uniform brain, vary parallel cytoarchitectonic representational Early emphasized weights. weights correlated [28.Honey C. al.Predicting connectivity.Proc. 2035-2040Crossref (1543) also Furthermore, structurally connected display greater unconnected Scholar,29.Shen K. al.Information processing functionally defined 32: 17465-17476Crossref (63) Scholar (Figure 1A). More globally, networks, particularly visual somatomotor circumscribed dense anatomical [29.Shen 30.Van Den al.Functionally linked brain.Hum. Brain Mapp. 30: 3127-3141Crossref (625) 31.Alves P.N. al.An improved neuroanatomical default-mode reconciles previous neuroimaging neuropathological findings.Commun. 2: 1-14Crossref While perfect. Even best-case estimates place correlation R2 ≈ 0.5 which means considerable variance (at least half) unexplained simple 1:1 structure. discrepancy widens case 1B ). A salient example homotopic corresponding structures two hemispheres. typically strongest subset [32.Mišić landscape One. 9: e111007Crossref (14) all supported callosal projection [33.Shen al.Stable long-range interhemispheric coordination projections.Proc. 6473-6478Crossref (52) strong may observed even individuals no [34.Uddin L.Q. al.Residual split-brain revealed fMRI.Neuroreport. 19: 703Crossref (96) 35.O'Reilly J.X. al.Causal effect disconnection lesions rhesus monkeys.Proc. 110: 13982-13987Crossref (106) 36.Layden E.A. al.Interhemispheric zebra finch absent corpus callosum normal ontogeny.NeuroImage. Crossref (1) examples illustrate sustained communication via indirect manifest FC. discordance pronounced mesoscopic scale. commonly meta-analytic recovered [37.Mišić al.Cooperative competitive spreading connectome.Neuron. 86: 1518-1529Abstract Scholar,38.Betzel R.F. al.Diversity meso-scale non-human connectomes.Nat. Commun. 2018; 346Crossref (21) 1C). reproducibly independent component community detection [39.Power J.D. 72: 665-678Abstract (1499) data-driven [20.Bellec Scholar,21.Thomas both recordings application diffusion-weighted covariance yields contiguous Scholar,40.Betzel modular networks: accounting wiring.Net. 42-68Crossref For example, fail identify default mode-like network, perhaps parts anatomically inter-connected differences. evidence assortative mixing, whereby (e.g., degrees) likely connected, whereas same true [50.Lim al.Discordant two-layer multiplex network.Sci. Rep. 2885Crossref (2) At scale, communities assortative, while disassortative [38.Betzel In words, affinity dissimilar attributes. As result, tuning algorithms sensitive improves match Altogether, rich body work demonstrates spans scales, edges their arrangement. Why FC? Functional arise connections, courses synapses removed other. propensity correlate driven only them, inputs they receive sensory organs entire [27.Damoiseaux Scholar,51.Bettinardi R.G. al.How sculpts function: unveiling structure.Chaos. 27: 047409Crossref (12) corollary much less distance-dependent connections. Anatomical subject material, spatial, constraints Scholar]; pressures reduced probability weight increasing spatial separation Although distance-dependence FC, weaker, ensuring differences configurations. section consider emergent property links. seen so far, exists nontrivial perfectly aligned. number emerged embody link, statistical [41.Mišić al.Network-level structure-function neocortex.Cereb. 26: 3285-3296Crossref (153) Scholar,42.Messé A. al.Relating relative contributions anatomy, stationary non-stationarities.PLoS. 10: e1003530Crossref Scholar,43.Graham D. Rockmore packet switching brain.J. 23: 267-276Crossref (18) 44.Goñi al.Resting-brain predicted analytic measures 111: 833-838Crossref (208) 45.Crofts J.J. Higham communicability measure applied networks.J. Interf. 411-414Crossref (61) [46.Honey al.Network shapes scales.Proc. 2007; 104: 10240-10245Crossref (941) 47.Breakspear Dynamic large-scale activity.Nat. 340Crossref (147) 48.Sanz-Leon al.Mathematical framework modeling Virtual Brain.NeuroImage. 385-430Crossref 49.Deco al.Key role coupling, delay, noise fluctuations.Proc. 10302-10307Crossref (372) Though implementation assumptions, emphasize collective, transcends geometric dependence dyadic relationships. briefly strategies, interpretation predictive utility, most importantly, what teach us about Perhaps simplest way statistically. Varying rank regression useful, canonical [52.Deligianni F. al.NODDI tensor-based microstructural indices predictors connectivity.PLoS 11: e0153404Crossref (13) partial squares objective simultaneously combinations maximally [53.McIntosh A.R. Mišić Multivariate analyses data.Annu. Psychol. 64: 499-525Crossref (73) 2). An appealing such modes. particular configuration subnetwork give Taking further, artificial learn recent variant word2vec algorithm build low-dimensional representation train deep edge-wise [54.Rosenthal relations embedded vector 2178Crossref (3) offer associate assuming specific mode interaction Communication science telecommunication engineering conceptualize superposition elementary events [43.Graham Scholar,55.Avena-Koenigsberger al.Communication networks.Nat. 17Crossref (92) By explicitly formulating inter-regional signaling, open important questions, namely: biologically realistic model, well does fit network? focused centralized shortest routing, discrete travel set source node prespecified target node. recently, attention shifted decentralized mechanisms where diffuse through [56.Mišić convergence zone hippocampus.PLoS. e1003982Crossref Scholar,57.Atasoy al.Human connectome-specific harmonic waves.Nat. 10340Crossref often broadcast fronts Scholar,58.Abdelnour diffusion accurately networks.NeuroImage. 90: 335-347Crossref (71) Scholar,59.Worrell J.C. al.Optimized sensory-motor integration.Net. 415-430Crossref Others considered neither fully nor decentralized, ensembles [45.Crofts Scholar,60.Avena-Koenigsberger al.Path tradeoff efficiency resilience connectome.Brain 222: 603-618Crossref (17) multiplexed strategies involving [44.Goñi Scholar,61.Avena-Koenigsberger routing networks.PLoS 15: e1006833Crossref 62.Betzel al.Structural, genetic factors interregional probed electrocorticography.Nat. Biomed. Eng. 63.Vazquez-Rodriguez al.Gradients tethering neocortex.Proc. 116: 21219-21227Crossref (6) consensus that, given topological proximity possible utilize either al.Re
Language: Английский
Citations
672Nature reviews. Neuroscience, Journal Year: 2019, Volume and Issue: 20(6), P. 330 - 345
Published: March 4, 2019
Language: Английский
Citations
585Frontiers in Neuroscience, Journal Year: 2019, Volume and Issue: 13
Published: June 6, 2019
Background: Analysis of the human connectome using functional magnetic resonance imaging (fMRI) started in mid-1990s and attracted increasing attention attempts to discover neural underpinnings cognition neurological disorders. In general, brain connectivity patterns from fMRI data are classified as statistical dependencies (functional connectivity) or causal interactions (effective among various units. Computational methods, especially graph theory-based have recently played a significant role understanding architecture. Objectives: Thanks emergence theoretical analysis, main purpose current paper is systematically review how properties can emerge through distinct neuronal units cognitive applications fMRI. Moreover, this article provides an overview existing effective methods used construct network, along with their advantages pitfalls. Methods: systematic review, databases Science Direct, Scopus, arXiv, Google Scholar, IEEE Xplore, PsycINFO, PubMed, SpringerLink employed for exploring evolution computational 1990 present, focusing on theory. The Cochrane Collaboration's tool was assess risk bias individual studies. Results: Our results show that theory its implications neuroscience researchers since 2009 (as Human Connectome Project launched), because prominent capability characterizing behavior complex systems. Although approach be generally applied either during rest task performance, date, most articles focused resting-state connectivity. Conclusions: This insight into utilize measures make neurobiological inferences regarding mechanisms underlying well different
Language: Английский
Citations
561Dialogues in Clinical Neuroscience, Journal Year: 2018, Volume and Issue: 20(2), P. 111 - 121
Published: June 30, 2018
Network neuroscience is a thriving and rapidly expanding field. Empirical data on brain networks, from molecular to behavioral scales, are ever increasing in size complexity. These developments lead strong demand for appropriate tools methods that model analyze network data, such as those provided by graph theory. This brief review surveys some of the most commonly used neurobiologically insightful measures techniques. Among these, detection communities or modules, identification central elements facilitate communication signal transfer, particularly salient. A number emerging trends growing use generative models, dynamic (time-varying) multilayer well application algebraic topology. Overall, theory centrally important understanding architecture, development, evolution networks.La neurociencia de la red es un campo próspero y rápida expansión. Los datos empíricos sobre las redes cerebrales, desde niveles moleculares hasta conductuales, son cada vez más grandes en tamaño complejidad. Estos desarrollos llevan una fuerte demanda herramientas métodos apropiados que modelen analicen los cerebral, como proporcionados por teoría grafos. Esta breve revisión examina algunas medidas técnicas gráficas comúnmente empleadas neurobiológicamente discriminadoras. Entre estas, particularmente importantes detección módulos o comunidades redes, identificación elementos centrales facilitan comunicación transferencia señales. Algunas tendencias emergentes el empleo creciente modelos generativos, dinámicas (de tiempo variable) multicapa, así aplicación topología algebraica. En general, grafos especialmente para comprender arquitectura, desarrollo evolución cerebrales.La des réseaux est domaine florissant qui s'étend rapidement. Les données empiriques sur les cérébraux, l'échelle moléculaire à comportementale, ne cessent d'augmenter volume et complexité. Ces développements génèrent une demande forte d'outils méthodes appropriés pour modéliser analyser comme celles fournies par théorie graphes. Dans cette rapide analyse, nous examinons certaines techniques mesures graphes plus couramment utilisées signifiantes neurobiologiquement. Parmi elles, détection modules ou communautés l'identification éléments réseau facilite le transfert du signal, sont particulièrement marquantes. tendances émergentes, note l'utilisation croissante modèles génératifs, dynamiques (variables avec temps) multi-couches, ainsi l'application topologie algébrique. Globalement, essentielles comprendre l'architecture, développement l'évolution cérébraux.
Citations
507Proceedings of the National Academy of Sciences, Journal Year: 2019, Volume and Issue: 116(42), P. 21219 - 21227
Published: Sept. 30, 2019
The white matter architecture of the brain imparts a distinct signature on neuronal coactivation patterns. Interregional projections promote synchrony among distant populations, giving rise to richly patterned functional networks. A variety statistical, communication, and biophysical models have been proposed study relationship between structure function, but link is not yet known. In present report we seek relate structural connection profiles individual areas. We apply simple multilinear model that incorporates information about spatial proximity, routing, diffusion regions predict their connectivity. find structure–function relationships vary markedly across neocortex. Structure function correspond closely in unimodal, primary sensory, motor regions, diverge transmodal cortex, particularly default mode salience divergence systematically follows cytoarchitectonic hierarchies. Altogether, results demonstrate networks do align uniformly brain, gradually uncouple higher-order polysensory
Language: Английский
Citations
469Nature reviews. Neuroscience, Journal Year: 2019, Volume and Issue: 20(7), P. 435 - 446
Published: May 24, 2019
Language: Английский
Citations
395Nature reviews. Neuroscience, Journal Year: 2018, Volume and Issue: 19(9), P. 566 - 578
Published: July 12, 2018
Language: Английский
Citations
377Nature Reviews Physics, Journal Year: 2019, Volume and Issue: 1(5), P. 318 - 332
Published: March 27, 2019
Language: Английский
Citations
342Nature Neuroscience, Journal Year: 2020, Volume and Issue: 23(12), P. 1644 - 1654
Published: Oct. 19, 2020
Language: Английский
Citations
270PLoS ONE, Journal Year: 2019, Volume and Issue: 14(7), P. e0220061 - e0220061
Published: July 26, 2019
The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity node influence, or be influenced by, other via its connection topology. Many measures have been proposed, but degree they offer unique information, and such whether it is advantageous use multiple define roles, unclear. Here we calculate correlations between 17 across 212 diverse real-world networks, examine how these relate variations in density global topology, investigate can clustered into distinct classes according their profiles. We find that generally positively correlated each other, strength varies modularity plays key role driving cross-network variations. Data-driven clustering based on profiles distinguish including topological cores highly central peripheries less nodes. Our findings illustrate topology shapes pattern demonstrate comparative approach inform interpretation nodal complex networks.
Language: Английский
Citations
259