Published: Nov. 15, 2024
Language: Английский
Published: Nov. 15, 2024
Language: Английский
Entropy, Journal Year: 2024, Volume and Issue: 26(8), P. 699 - 699
Published: Aug. 17, 2024
To meet the challenges of energy sustainability, integrated system (IES) has become a key component in promoting development innovative systems. Accurate and reliable multivariate load prediction is prerequisite for IES optimal scheduling steady running, but uncertainty fluctuation many influencing factors increase difficulty forecasting. Therefore, this article puts forward multi-energy approach IES, which combines fennec fox optimization algorithm (FFA) hybrid kernel extreme learning machine. Firstly, comprehensive weight method used to combine entropy Pearson correlation coefficient, fully considering information content correlation, selecting affecting prediction, ensuring that input features can effectively modify results. Secondly, coupling relationship between learned predicted using At same time, FFA parameter optimization, reduces randomness setting. Finally, utilized measured data at Arizona State University verify its effectiveness The results indicate mean absolute error (MAE) proposed 0.0959, 0.3103 0.0443, respectively. root square (RMSE) 0.1378, 0.3848 0.0578, weighted percentage (WMAPE) only 1.915%. Compared other models, model higher accuracy, with maximum reductions on MAE, RMSE WMAPE 0.3833, 0.491 2.8138%,
Language: Английский
Citations
5AIP Advances, Journal Year: 2025, Volume and Issue: 15(1)
Published: Jan. 1, 2025
This study aims to investigate the use of Long Short-Term Memory (LSTM) models for predicting temporal variations in grounding resistance using time series data. analysis is first apply LSTM prediction, utilizing experimental data, including soil resistivity and rainfall. The model trained, validated, tested with various parameters, enabling a comparative assessment its accuracy capturing variations. Furthermore, benchmarks model’s performance against traditional Artificial Neural Networks, confirming LSTM’s superior predictive regarding time-dependent changes resistance. results prediction show that significantly surpasses methods terms mean absolute percentage error, an improvement 72.73% across metrics.
Language: Английский
Citations
0Jurnal Manajemen Informatika dan Sistem Informasi, Journal Year: 2025, Volume and Issue: 8(1), P. 45 - 58
Published: Jan. 16, 2025
Peningkatan populasi menyebabkan peningkatan permintaan energi. Hingga saat ini, masalah terkait energi adalah sumber daya yang terbatas. Energi alternatif terbarukan dapat dimanfaatkan secara optimal di masa depan. Salah satu matahari karena jumlahnya melebihi kebutuhan ini dan Hal sejalan dengan target 7.2 dalam Sustainable Development Goals (SDGs) 2030, yaitu meningkatkan porsi signifikan bauran global. Indonesia memiliki potensi melalui radiasi matahari. Namun, pemanfaatan surya sebagai pembangkit listrik Provinsi DKI Jakarta belum optimal. Penelitian bertujuan untuk memprediksi nilai Global Horizontal Irradiance (GHI) harian menggunakan Support Vector Regression (SVR) Bayesian Optimization membandingkannya XGBoost menemukan model terbaik dari hasil prediksi. Metode BO-SVR terbukti memberikan prediksi baik kuat pada data digunakan MAPE RMSE pengujian masing-masing 0,182 34,412. Penerapan menentukan hiperparameter membentuk telah kinerja model. menghasilkan informasi bagi pemerintah, khususnya PT Perusahaan Listrik Negara (PLN) peneliti karakteristik
Citations
0Computers & Electrical Engineering, Journal Year: 2025, Volume and Issue: 123, P. 110122 - 110122
Published: Feb. 12, 2025
Language: Английский
Citations
0Journal of Pipeline Science and Engineering, Journal Year: 2025, Volume and Issue: unknown, P. 100268 - 100268
Published: March 1, 2025
Language: Английский
Citations
0Journal of Civil Structural Health Monitoring, Journal Year: 2025, Volume and Issue: unknown
Published: April 9, 2025
Language: Английский
Citations
0Journal of Pipeline Systems Engineering and Practice, Journal Year: 2025, Volume and Issue: 16(3)
Published: May 12, 2025
Language: Английский
Citations
0Energy, Journal Year: 2024, Volume and Issue: unknown, P. 133640 - 133640
Published: Oct. 1, 2024
Language: Английский
Citations
1Computers & Electrical Engineering, Journal Year: 2024, Volume and Issue: 122, P. 109976 - 109976
Published: Dec. 11, 2024
Language: Английский
Citations
1Research Square (Research Square), Journal Year: 2024, Volume and Issue: unknown
Published: Sept. 20, 2024
Language: Английский
Citations
1