The
National
Institute
of
Justice
(NIJ)
and
the
Forensic
Technology
Center
Excellence,
an
NIJ
program
hosted
a
four-day
symposium,
January
11–14,
2022.
symposium
included
presentations
panel
discussions
on
topics
relevant
to
recent
advances
in
firearm
toolmark
examination
with
focus
future.
brought
together
685
criminal
justice
processionals
explore
implementation
three-dimensional
(3D)
imaging
technologies,
best
practices
for
forensic
evidence,
federal
initiatives,
gun
crime
intelligence,
black
box
studies
examination,
legal
challenges
admissibility
current
evidence
engineering
solutions
that
will
be
used
court
future,
Organization
Scientific
Area
Committee
(OSAC)
standards
reporting,
uniform
language
testimony
conclusion
scales.
provided
examples
how
agencies
implement
new
technologies
firearms
incorporate
statistics
add
weight
comparisons,
address
issues,
operationalize
intelligence
improve
public
safety
share
information
community.
also
platform
discuss
series
considerations
forensic,
law
enforcement,
greater
community
could
help
support
successful
national
transition
accelerate
adoption
examination.
Journal of Forensic Sciences,
Journal Year:
2024,
Volume and Issue:
69(6), P. 2028 - 2040
Published: Aug. 22, 2024
Abstract
Traditionally,
firearm
and
toolmark
examiners
manually
evaluate
the
similarity
of
features
on
two
bullets
using
comparison
microscopy.
Advances
in
microscopy
have
made
it
possible
to
collect
3D
topographic
data,
several
automated
algorithms
been
introduced
for
bullet
striae
these
data.
In
this
study,
open‐source
approaches
cross‐correlation,
congruent
matching
profile
segments,
consecutive
striations,
a
random
forest
model
were
evaluated.
A
statistical
characterization
was
performed
four
datasets
consecutively
manufactured
firearms
provide
challenging
scenario.
Each
approach
applied
all
samples
pairwise
fashion,
classification
performance
compared.
Based
findings,
Bayesian
network
empirically
learned
constructed
leverage
strengths
each
individual
approach,
relationship
between
results,
combine
them
into
posterior
probability
given
comparison.
The
evaluated
similarly
approaches,
results
developed
classified
99.6%
correctly,
resultant
distributions
significantly
separated
more
so
than
when
used
isolation.
Journal of Forensic Sciences,
Journal Year:
2022,
Volume and Issue:
67(6), P. 2416 - 2424
Published: Sept. 23, 2022
One
of
the
most
discussed
issues
in
forensic
firearms
identification
is
subjectivity
conclusions.
The
main
part
examiners'
work
to
make
a
microscopic
comparison
marks
on
cartridge
cases
and
bullets.
In
this
process,
examiners
have
decide
if
quantity
quality
observed
characteristics
are
sufficient
for
identification.
This
decision
based
personal
experience
an
examiner,
so
with
different
backgrounds
can
come
conclusions,
fact
presents
problem.
Besides,
calculation
error
rate
type
examination
debatable
issue.
Different
mathematical
statistical
models
were
proposed,
computer-based
algorithms
developed
order
avoid
determine
rates.
article
investigates
possibility
use
methods
machine
learning
firing
pin
impressions
cases.
research,
Siamese
network
model,
which
included
two
similar
Convolutional
Neural
Networks,
was
prepared
trained.
For
training
validation
database
prepared.
images
discharged
from
300
that
came
regular
casework
clone
used
data
augmentation.
model
trained
examined
using
database.
metrics,
such
as
accuracy,
sensitivity,
specificity
calculated.
results
research
show
building
objective
system
known
rate.
Forensic Science International,
Journal Year:
2023,
Volume and Issue:
349, P. 111734 - 111734
Published: May 19, 2023
Ballistics
(the
linkage
of
bullets
and
cartridge
cases
to
weapons)
is
a
common
type
evidence
encountered
in
criminal
around
the
world.
The
interest
lies
determining
whether
two
were
fired
using
same
firearm.
This
paper
proposes
an
automated
method
classify
from
surface
topography
Land
Engraved
Area
(LEA)
images
pellets
machine
deep
learning
methods.
curvature
was
removed
loess
fit
features
extracted
Empirical
Mode
Decomposition
(EMD)
followed
by
various
entropy
measures.
informative
identified
minimum
Redundancy
Maximum
Relevance
(mRMR),
finally
classification
performed
Support
Vector
Machines
(SVM),
Decision
Tree
(DT)
Random
Forest
(RF)
classifiers.
results
revealed
good
predictive
performance.
In
addition,
model
DenseNet121
used
LEA
images.
provided
higher
performance
than
SVM,
DT
RF
Moreover,
Grad-CAM
technique
visualise
discriminative
regions
These
suggest
that
proposed
can
be
expedite
projectiles
firearms
assist
ballistic
examinations.
this
work,
compared
air
both
rifles
high
velocity
pistol.
Air
guns
collect
data
because
they
more
accessible
other
could
as
proxy,
delivering
comparable
LEAs.
methods
developed
here
proof-of-concept
are
easily
expandable
bullet
case
identification
any
weapon.
Journal of Forensic Sciences,
Journal Year:
2022,
Volume and Issue:
67(4), P. 1417 - 1430
Published: March 9, 2022
The
congruent
matching
cells
(CMC)
method
was
invented
at
the
National
Institute
of
Standards
and
Technology
(NIST)
in
2012
for
automatic
objective
firearm
evidence
identifications
estimation
weight
identifications.
Since
2013,
five
CMC
algorithms
have
been
developed
NIST.
In
this
paper,
virtual
image
standard
(VIS)
is
proposed
through
trimming
stitching
KNM
images
quantitative
performance
evaluations
different
algorithms.
evaluation
criteria
include
correlation
accuracy
(both
numbers
distribution
pattern),
efficiency,
false
positive
(FP)
error
rate,
maximum
separation
known
(KM)
non-matching
(KNM)
pairs.
VIS
composes
from
images,
which
can
provide
a
ground
truth
verifying
numbers,
patterns,
FP
errors.
By
identifying
three
groups
VIS,
Convergence
algorithm
showed
superior
performances
future
casework
Lastly,
success
study
suggests
that
could
also
be
used
to
optimize
parameters,
develop
test
new
algorithms,
evaluate
before
it
put
into
use
examiner's
casework.
ԴԱՏԱԿԱՆ ՓՈՐՁԱՔՆՆՈՒԹՅԱՆ ԵՎ ՔՐԵԱԳԻՏՈՒԹՅԱՆ ՀԱՅԿԱԿԱՆ ՀԱՆԴԵՍ,
Journal Year:
2023,
Volume and Issue:
unknown, P. 118 - 126
Published: Jan. 1, 2023
В
настоящее
время
в
отдельных
экспертных
исследованиях
применяют
методы
статистического
анализа
и
машинного
обучения.
Их
широкое
внедрение
экспертную
практику
осложняется
отсутствием
у
экспертов
компетенций
области
современных
методов
анализа,
к
которым
можно
отнести
работе
рассмотрены
современные
методики,
основанные
на
статистическом
анализе
методах
обучения,
адаптированные
для
решения
задач
судебной
баллистики
баллистической
идентификации.
Внедрение
таких
методик
ведет
изменению
парадигмы
формирования
категорических
выводов.
Суть
изменений
заключается
переходе
от
модели,
когда
категорические
выводы
эксперта
опираются
основном
его
внутреннее
убеждение,
где
убеждение
формируется
основе
количественной
оценки
доказываемого
факта,
которая
должна
быть
предъявлена
суду
может
перепроверена
другими
независимыми
специалистами.
Для
широкого
внедрения
математических
сравнения
схожести
следов,
предварительно
необходимо
обеспечить
возможность
приобретения
экспертами
«соответствующих»
компетенций.
С
этой
целью
была
разработана
дисциплина
«Математические
судебно-баллистической
экспертизе»,
взята
за
основу
курсов
повышения
квалификации
экспертов-баллистов,
имеющих
естественно-научное
или
техническое
высшее
образование.
Ключевые
слова:
идентификация
огнестрельного
оружия,
компетенции,
судебно-баллистическая
экспертиза,
курсы
квалификации.